An Efficient Protocol for the Green and Solvent-Free Synthesis of Azine Derivatives at Room Temperature Using BiCl3-Loaded Montmorillonite K10 as a New Recyclable Heterogeneous Catalyst
A new BiCl3-loaded montmorillonite K10 catalyst has been prepared by solid dispersion method and was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and cyclic voltammetry (CV) measurements. BiCl3 loaded K10 (BiCl3-K10) has been used as solid acid catalyst for the synthesis of azine derivatives from benzophenone hydrazone and ketones/aldehydes by simple physical grinding. This BiCl3-K10 gives an excellent yield with short reaction time and is an inexpensive, easily recyclable catalyst for this reaction. 1. Introduction Commercially available BiCl3 had been widely used as a Lewis acid catalyst for aldol reaction [1], hetero Diels-Alder reaction [2], ring opening of epoxides with aromatic amines [3], deoxygenative allylation of substituted benzylic alcohols with allyltrimethylsilane [4], and for three-component synthesis of β-amino carbonyl compounds [5]. But BiCl3 is highly hygroscopic and difficult to handle as it is toxic and causes irritation to the gastrointestinal and respiratory tract. In addition, this catalyst cannot be reused. Bismuth chloride is to be loaded on a support material for easy handling and utilization. Clays function as efficient catalysts for various organic transformations due to their Bronsted and Lewis acidities in their natural and ion-exchanged forms [6]. Commercially available montmorillonite K10 (Mont K10) clay is one such material that can fulfill these requirements. Mont K10 is an environmentally benign and economically feasible solid catalyst that offer several advantages, such as ease of handling, non-corrosiveness, low cost, and regeneration. Its high surface area (250?m2?g?1) makes it as a useful and active catalyst. Its structural feature [7] and synthetic potential [8] have been extensively studied. Mont K10 is a layered alumino-silicate with a dioctahedral layer sandwiched between two tetrahedral layers. Due to strong catalytic activity as solid acid, Mont K10 clay has been used extensively as a catalyst for many organic transformations [9–12]. Azines, R1R2C=N–N=CR1R2, have attracted great attention in organic synthesis as they are good synthons for obtaining various heterocyclic compounds [13, 14]. These compounds constitute an important class of compounds with unexpected biological activities [15, 16]. The usual method for the preparation of azines involves treatment of carbonyl compounds with hydrazine hydrate and acetic acid in ethanol [17]. A number of methods have been reported for the synthesis of azines under various conditions [18–21], but most of them require
References
[1]
H. Ohki, M. Wada, and K. Y. Akiba, “Bismuth trichloride as a new efficient catalyst in the aldol reaction,” Tetrahedron Letters, vol. 29, no. 37, pp. 4719–4722, 1988.
[2]
G. Sabitha, E. Venkata Reddy, J. S. Yadav, K. V. S. Rama Krishna, and A. Ravi Sankar, “Stereoselective synthesis of octahydro-3bH-[1,3]dioxolo[4″,5″:4′,5′]furo [2′,3′:5,6]pyrano[4,3-b]quinolines via intramolecular hetero-Diels-Alder reactions catalyzed by bismuth(III) chloride,” Tetrahedron Letters, vol. 43, no. 22, pp. 4029–4032, 2002.
[3]
T. Ollevier and G. Lavie-Compin, “An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride,” Tetrahedron Letters, vol. 43, no. 44, pp. 7891–7893, 2002.
[4]
S. K. De and R. A. Gibbs, “Bismuth(III) chloride-catalyzed direct deoxygenative allylation of substituted benzylic alcohols with allyltrimethylsilane,” Tetrahedron Letters, vol. 46, no. 48, pp. 8345–8350, 2005.
[5]
H. Li, H. Y. Zeng, and H. W. Shao, “Bismuth(III) chloride-catalyzed one-pot Mannich reaction: three-component synthesis of β-amino carbonyl compounds,” Tetrahedron Letters, vol. 50, no. 49, pp. 6858–6860, 2009.
[6]
M. D. Nikalje, P. Phukan, and A. Sudalai, “Recent advances in clay-catalyzed organic transformations,” Organic Preparations and Procedures International, vol. 32, no. 1, pp. 1–40, 2000.
[7]
T. Cseri, S. Békássy, F. Figueras, E. Cseke, L. C. de Menorval, and R. Dutartre, “Characterization of clay-based K catalysts and their application in Friedel-Crafts alkylation of aromatics,” Applied Catalysis A, vol. 132, no. 1, pp. 141–155, 1995.
[8]
B. M. Choudary, N. S. Chowdari, M. L. Kantam, and R. Kannan, “Fe(III) exchanged montmorillonite: a mild and ecofriendly catalyst for sulfonylation of aromatics,” Tetrahedron Letters, vol. 40, no. 14, pp. 2859–2862, 1999.
[9]
T. K. Huang, R. Wang, L. Shi, and X. X. Lu, “Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water,” Catalysis Communications, vol. 9, no. 6, pp. 1143–1147, 2008.
[10]
T. Joseph, G. V. Shanbhag, D. P. Sawant, and S. B. Halligudi, “Chemoselective anti-Markovnikov hydroamination of α,β-ethylenic compounds with amines using montmorillonite clay,” Journal of Molecular Catalysis A, vol. 250, no. 1-2, pp. 210–217, 2006.
[11]
F. R. P. Crisóstomo, R. Carrillo, T. Martín, and V. S. Martín, “Montmorillonite K-10 as a mild acid for the Nicholas reaction,” Tetrahedron Letters, vol. 46, no. 16, pp. 2829–2832, 2005.
[12]
T. Kawabata, T. Mizugaki, K. Ebitani, and K. Kaneda, “Highly efficient esterification of carboxylic acids with alcohols by montmorillonite-enwrapped titanium as a heterogeneous acid catalyst,” Tetrahedron Letters, vol. 44, no. 51, pp. 9205–9208, 2003.
[13]
R. M. Mohareb, J. Z. Ho, and F. O. Alfarouk, “Synthesis of thiophenes, azoles and azines with potential biological activity by employing the versatile heterocyclic precursor N- benzoycyanoacetylhydrazine,” Journal of the Chinese Chemical Society, vol. 54, no. 4, pp. 1053–1066, 2007.
[14]
R. Manikannan, R. Venkatesan, S. Muthusubramanian, P. Yogeeswari, and D. Sriram, “Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 23, pp. 6920–6924, 2010.
[15]
V. M. Kolb, D. H. Hua, and W. L. Duax, “Stereochemistry of long-lasting opiates. 2. δ-Selective opiate antagonists and their agonist analogues,” Journal of Organic Chemistry, vol. 52, no. 14, pp. 3003–3010, 1987.
[16]
V. M. Kolb and D. H. Hua, “Syn-anti isomerism in the opiate hydrazones and azines derived from naloxone, naltrexone, and oxymorphone,” Journal of Organic Chemistry, vol. 49, no. 20, pp. 3824–3828, 1984.
[17]
A. I. Vogel, Text book of Practical Organic Chemistry, ELBS and Longman, London, UK, 4th edition, 1978.
[18]
H. M. Nanjundaswamy and M. A. Pasha, “Selective protection of carbonyl compounds as azines and their facile regeneration,” Synthetic Communications, vol. 36, no. 21, pp. 3161–3165, 2006.
[19]
S. N. Shah and N. K. Chudgar, “Thermolysis of semicarbazones to the corresponding azines through reactive N-substituted isocyanate intermediates,” Molecules, vol. 5, no. 4, pp. 657–664, 2000.
[20]
H. Eshghi and M. Hosseini, “Selective and convenient protection of aldehydes as azines under solvent-free conditions,” Journal of the Chinese Chemical Society, vol. 55, no. 3, pp. 636–638, 2008.
[21]
J. Safari and S. Gandomi-Ravandi, “Highly efficient practical procedure for the synthesis of azine derivatives under solvent-free conditions,” Synthetic Communications, vol. 41, no. 5, pp. 645–651, 2011.
[22]
S. Samai, G. Chandra Nandi, R. Kumar, and M. S. Singh, “Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines,” Tetrahedron Letters, vol. 50, no. 50, pp. 7096–7098, 2009.
[23]
M. E. Moon, Y. Choi, Y. M. Lee et al., “An expeditious and environmentally benign preparation of aryl halides from aryl amines by solvent-free grinding,” Tetrahedron Letters, vol. 51, no. 51, pp. 6769–6771, 2010.
[24]
B. Krishnakumar and M. Swaminathan, “An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst,” Catalysis Communications, vol. 16, no. 1, pp. 50–55, 2011.
[25]
J. Virkutyte and R. S. Varma, “Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range,” Separation and Purification Technology, vol. 78, no. 2, pp. 201–207, 2011.
[26]
S. M. Abo-Naf, R. L. Elwan, and G. M. Elkomy, “Crystallization of bismuth oxide nano-crystallites in a SiO2-PbO-Bi2O3 glass matrix,” Journal of Non-Crystalline Solids, vol. 358, no. 5, pp. 964–968, 2012.
[27]
B. Krishnakumar, B. Subash, and M. Swaminathan, “AgBr-ZnO—an efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light,” Separation and Purification Technology, vol. 85, pp. 35–44, 2012.
[28]
B. Krishnakumar, R. Velmurugan, and M. Swaminathan, “TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation,” Catalysis Communications, vol. 12, no. 5, pp. 375–379, 2011.
[29]
B. Krishnakumar and M. Swaminathan, “Solvent free synthesis of quinoxalines, dipyridophenazines and chalcones under microwave irradiation with sulfated Degussa titania as a novel solid acid catalyst,” Journal of Molecular Catalysis A, vol. 350, no. 1-2, pp. 16–25, 2011.
[30]
B. Krishnakumar and M. Swaminathan, “An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst,” Catalysis Communications, vol. 16, no. 1, pp. 50–55, 2011.