全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development

DOI: 10.5402/2012/873046

Full-Text   Cite this paper   Add to My Lib

Abstract:

The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of ?g Iodine/100?g and a saponification number of ?mg?KOH/g with the dominant fatty acid being C18:2 ( %). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products. 1. Introduction Vicinal azidoalcohols are precursors of aminoalcohols, which are well known as β-blockers and present in various natural products and different bioactive compounds; vicinal azidoalcohols not only constitute components of biologically active natural products but also serve as essential intermediates in the synthesis of amino sugar [1–3], carboxylic nucleosides [4], lactams [5], oxazolines, and aminoalcohols [6]. Ring-opening reactions of epoxides with nucleophiles are very useful approach in organic synthesis for the preparation of functionalized oxygenated compounds. Epoxides are versatile intermediates in organic synthesis, and their reactions with a variety of reagents such as electrophiles, nucleophiles, acids, bases, reducing agents, and some oxidizing agents are widely studied [7]. The reaction with nucleophiles such as oxygen compounds [8–10], nitrogen compounds (amine and derivatives of amines, azide, nitrate, and isocyanate), halides, and various carbon nucleophiles [11, 12] has been performed in both organic and aqueous solvents. Oleochemicals are chemicals derived from plant and animal fats. They are analogous to petrochemicals derived from petroleum. The formation of basic oleochemical substances like fatty acids, fatty acid methyl esters (FAMEs), fatty alcohols, fatty amines, and glycerols is by various chemical and enzymatic reactions. In the last decade, the oleochemical industry has been growing steadily due to increased global demand for more environment-friendly products. This is because of oleochemicals’ attractive traits such as being derived from renewable resources, nontoxic, and readily biodegradable. Oils and fats of plant and animal origin offer possibilities of providing industries with a wealth of reaction products which will be

References

[1]  T. Balakrishnan, E. Murugan, and A. Siva, “Synthesis and characterization of novel soluble multi-site phase transfer catalyst; its efficiency compared with single-site phase transfer catalyst in the alkylation of phenylacetonitrile as a model reaction,” Applied Catalysis A, vol. 273, no. 1-2, pp. 89–97, 2004.
[2]  A. Oge, M. E. Mavis, C. Yolacan, and F. Aydogan, “Solvent-free Michael addition of 2-cyclohexenone under ultrasonic irradiation in the presence of long chain dicationic ammonium salts,” Turkish Journal of Chemistry, vol. 36, pp. 137–146, 2012.
[3]  S. U. Sonavane, M. Chidambaram, S. Khalil, J. Almog, and Y. Sasson, “Synthesis of cyclic disulfides using didecyldimethylammonium bromide as phase transfer catalyst,” Tetrahedron Letters, vol. 49, no. 3, pp. 520–522, 2008.
[4]  F. Kazemi, A. R. Kiasat, and S. Ebrahimi, “Regioselective azidolysis of epoxides catalyzed with LiBF4,” Synthetic Communications, vol. 33, no. 6, pp. 999–1004, 2003.
[5]  B. T. Smith, V. Gracias, and J. Aubé, “Regiochemical studies of the ring expansion reactions of hydroxy azides with cyclic ketones,” The Journal of Organic Chemistry, vol. 65, no. 12, pp. 3771–3774, 2000.
[6]  B. T. Cho, “Recent advances in the synthetic applications of the oxazaborolidine-mediated asymmetric reduction,” Tetrahedron, vol. 62, no. 33, pp. 7621–7643, 2006.
[7]  J. C. Smith, “Synthetically useful reactions of epoxides,” Synthesis, vol. 1984, no. 8, pp. 629–656, 1984.
[8]  B. Tamami, N. Iranpoor, and R. Rezaie, “Synthesis of azidohydrins, nitrohydrins and nitratohydrins from epoxides using azide, nitrite and nitrate exchange resins,” Iranian Polymer Journal, vol. 13, no. 6, pp. 495–501, 2004.
[9]  B. Tamami, N. Iranpoor, and M. A. Karimizarchi, “Polymer-supported ceric(IV) catalyst: 1. Catalytic ring opening of epoxides,” Polymer, vol. 34, no. 9, pp. 2011–2013, 1993.
[10]  N. Iranpoor, H. Firouzabadi, A. Safavi, and M. Shekarriz, “Ring opening of epoxides with carboxylates and phenoxides in micellar media catalyzed with Ce(OTf)4,” Synthetic Communications, vol. 32, no. 15, pp. 2287–2293, 2002.
[11]  N. Iranpoor and P. Salehi, “Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols,” Tetrahedron, vol. 51, no. 3, pp. 909–912, 1995.
[12]  B. Tamami, I. Ghazi, and H. Mahdavi, “Polyvinylpyrrolidone/thionyl chloride as a new polymeric reagent for facile conversion of epoxides to β-chlorohydrins,” Synthetic Communications, vol. 32, no. 24, pp. 3725–3731, 2002.
[13]  U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, and H. J. Sch?fer, “Oils and fats as renewable raw materials in chemistry,” Angewandte Chemie, vol. 50, no. 17, pp. 3854–3871, 2011.
[14]  Z. C. Petrovic, A. Zlatanic, C. C. Lava, and S. Sinadinovic-Fiser, “Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acidsskinetics and side reactions,” European Journal of Lipid Science and Technology, vol. 104, pp. 293–299, 2002.
[15]  G. Knothe, “Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,” Fuel Processing Technology, vol. 86, no. 10, pp. 1059–1070, 2005.
[16]  P. Tran, K. Seybold, D. Graiver, and R. Narayan, “Free radical maleation of soybean oil via a single-step process,” Journal of the American Oil Chemists' Society, vol. 82, no. 3, pp. 189–194, 2005.
[17]  V. Sharma and P. P. Kundu, “Addition polymers from natural oils—a review,” Progress in Polymer Science, vol. 31, no. 11, pp. 983–1008, 2006.
[18]  R. A. Holser, “Transesterification of epoxidized soybean oil to prepare epoxy methyl esters,” Industrial Crops and Products, vol. 27, no. 1, pp. 130–132, 2008.
[19]  S. Saito, N. Takahashi, T. Ishikawa, and T. Moriwake, “Selective C-2 opening of 2,3-epoxyesters with HN3-amine system: a viable route to β-hdyroxy-α-amino acids,” Tetrahedron Letters, vol. 32, no. 5, pp. 667–670, 1991.
[20]  J. A. Kenar, F. D. Gunstone, and G. Knothe, “Chemical properties,” in The Lipid Handbook, J. L. Harwood, F. D. Gunstone, and A. J. Dijkstra, Eds., pp. 535–589, CRC Press, 3rd edition, 2007, with CD-ROM.
[21]  G. Sabitha, R. S. Babu, M. J. Kumar Reddy, and J. S. Yadav, “Ring opening of epoxides and aziridines with sodium azide using oxone in aqueous acetonitrile: a highly regioselective azidolysis reaction,” Synthesis, vol. 2002, no. 15, pp. 2254–2258, 2002.
[22]  A. Biswas, B. K. Sharma, J. L. Willett, S. Z. Erhan, and H. N. Cheng, “Room-temperature self-curing ene reactions involving soybean oil,” Green Chemistry, vol. 10, no. 3, pp. 290–295, 2008.
[23]  S. Br?se and K. Banert, Organic Azides: Syntheses and Applications, John Wiley & Sons, New York, NY, USA, 2010.
[24]  S. Fürmeier and J. O. Metzger, “Fat-derived aziridines and their n-substituted derivatives: biologically active compounds based on renewable raw materials,” European Journal of Organic Chemistry, vol. 2003, no. 4, pp. 649–659, 2003.
[25]  R. A. Oderinde, A. Adewuyi, and I. A. Ajayi, “Determination of the mineral nutrients, characterization and analysis of the fat-soluble vitamins of Caesalpinia pulcherrima and Albizia lebbeck seeds and seed oils,” Seed Science and Biotechnology, vol. 2, no. 1, pp. 74–78, 2008.
[26]  AOAC, Official Methods of Analysis, vol. 67, Association of Official Analytical Chemist, Arlington, Va, USA, 14th edition, 1994.
[27]  B. A. Salau, E. O. Ajani, K. T. Odufuwa, B. O. Adegbesan, and M. O. Soladoye, “Effect of processing on iodine content of some selected plants food,” African Journal of Biotechnology, vol. 9, no. 8, pp. 1200–1204, 2010.
[28]  A. A. Warra, I. G. Wawata, S. Y. Gunu, and F. A. Atiku, “Soap preparation from Soxhlet extracted Nigerian Cotton seed oil,” Advances in Applied Science Research, vol. 2, pp. 617–623, 2011.
[29]  I. A. Ajayi, “Physicochemical attributes of oils from seeds of different plants in Nigeria,” Bulletin of the Chemical Society of Ethiopia, vol. 24, no. 1, pp. 145–149, 2010.
[30]  F. D. Gunstone, Oils and Fats in the Food Industry, Food Industry Briefing, Blackwell Publishing Company, London, UK, 2008.
[31]  M. Tariq, S. Ali, F. Ahmad et al., “Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil,” Fuel Processing Technology, vol. 92, no. 3, pp. 336–341, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133