This paper reviews the topic of microstructured polymer fibres in the fields in which these have been utilised: microstructured optical fibres, terahertz waveguides, and fibre-drawn metamaterials. Microstructured polymer optical fibres were initially investigated in the context of photonic crystal fibre research, and several unique features arising from the combination of polymer and microstructure were identified. This lead to investigations in sensing, particularly strain sensing based on gratings, and short-distance data transmission. The same principles have been extended to waveguides at longer wavelengths, for terahertz frequencies, where microstructured polymer waveguides offer the possibility for low-loss flexible waveguides for this frequency region. Furthermore, the combination of microstructured polymer fibres and metals is being investigated in the fabrication of metamaterials, as a scalable method for their manufacture. This paper will review the materials and fabrication methods developed, past and current research in these three areas, and future directions of this fabrication platform. 1. Introduction Polymers have been investigated as a platform for the fabrication of microstructured optical fibres (MOFs) since 2001 [1–5] in the context of the photonic crystal fibre (PCF) research that had begun five years earlier [6–9]. The original work on PCF was based on silica fibres and the key innovation of using holes running the length of an optical fibre to control light in unprecedented ways [9]. The interest in using polymers arose from the difference in material properties between polymers and silica and the possibilities this entailed [1]. This initial work on microstructured polymer optical fibres (mPOFs) aimed to investigate the implications of these differences in material properties on the fabrication methods, fibre designs, optical properties, and potential applications of these fibres. These new fibres would be compared to the two related established areas of silica-based PCF, having the microstructure in common, and conventional polymer optical fibres (POFs) [10], having the material in common. The underlying theme was to identify situations where the combination of these two elements, the polymer and microstructure, was more beneficial than either element alone. Over the next decade, the work on mPOF matured, as with work on PCF in general. The fabrication techniques were formalised, and performance matching and exceeding those of commercial POF was achieved in comparable cases [11–13]. The limitations and possible applications
References
[1]
M. A. Van Eijkelenborg, M. C. J. Large, A. Argyros et al., “Microstructured polymer optical fibre,” Optics Express, vol. 9, no. 7, pp. 319–327, 2001.
[2]
M. A. Van Eijkelenborg, A. Argyros, G. Barton et al., “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Optical Fiber Technology, vol. 9, no. 4, pp. 199–209, 2003.
[3]
M. C. J. Large, A. Argyros, F. Cox et al., “Microstructured polymer optical fibres: new opportunities and challenges,” Molecular Crystals and Liquid Crystals, vol. 446, pp. 219–231, 2006.
[4]
M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres, Springer, Berlin, Germany, 2007.
[5]
A. Argyros, “Microstructured polymer optical fibres,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1571–1579, 2009.
[6]
J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, no. 19, pp. 1547–1549, 1996.
[7]
P. St. J. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358–362, 2003.
[8]
J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.
[9]
P. S. J. Russell, “Photonic-crystal fibers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4729–4749, 2006.
[10]
O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook, Springer, Belrin, Germany, 2008.
[11]
A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibres,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 192–197, 2012.
[12]
R. Provo, S. G. Murdoch, J. D. Harvey, R. Lwin, S. G. Leon-Saval, and A. Argyros, “Error free 9. 5?Gb/s transmission over 50?m of multimode microstructured polymer optical fibres,” in Proceedings of the Quantum Electronics Conference & Lasers and Electro-Optics Conference, pp. 784–786, Sydney, Australia.
[13]
Y. Shi, C. Okonkwo, A. Argyros et al., “7. 3?Gbit/s transmission over microstructured polymer optical fiber for in-home networks,” IEEE Photonics Technology Letters, vol. 24, no. 14, pp. 1257–1259, 2012.
[14]
B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Materials, vol. 1, no. 1, pp. 26–33, 2002.
[15]
M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, no. 2, pp. 97–105, 2007.
[16]
B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics, vol. 1, no. 9, pp. 517–525, 2007.
[17]
W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports on Progress in Physics, vol. 70, no. 8, article no. R02, pp. 1325–1379, 2007.
[18]
ZOmega Terahertz Corporation, “The Terahertz Wave Ebook,” 2012, http://dl.z-thz.com/eBook/zomega_ebook_pdf_1206_sr.pdf.
[19]
Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. 513–517, 2006.
[20]
R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” Journal of Applied Physics, vol. 88, no. 7, pp. 4449–4451, 2000.
[21]
V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Soviet Physics Uspeckhi-USSR, vol. 10, no. 4, p. 509, 1968.
[22]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.
[23]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001.
[24]
W. Cai and V. Shalaev, Optical Metamaterials: fundamentals and Applications, Springer, 2009.
[25]
R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Y. S. Kivshar, “Metamaterials and metaoptics,” NPG Asia Materials, vol. 3, pp. 100–108, 2011.
[26]
J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000.
[27]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006.
[28]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, p. 1686, 2007.
[29]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[30]
D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006.
[31]
A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials, vol. 2, no. 1, pp. 1–17, 2008.
[32]
M. Walther, A. Ortner, H. Meier, U. L?ffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Applied Physics Letters, vol. 95, no. 25, Article ID 251107, 2009.
T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, no. 13, pp. 961–963, 1997.
[37]
Y. Gao, N. Guo, B. Gauvreau et al., “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” Journal of Materials Research, vol. 21, no. 9, pp. 2246–2254, 2006.
[38]
M. A. Van Eijkelenborg, A. Argyros, and S. G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fiber,” Optics Letters, vol. 33, no. 21, pp. 2446–2448, 2008.
[39]
S. Irie and M. Nishiguchi, “Development of the resistant plastic optical fiber,” in Proceedings of the International Conference on Plastic Optical Fibers, p. 88, 1994.
[40]
J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Optical Fiber Technology, vol. 7, no. 2, pp. 101–140, 2001.
[41]
S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Optics Express, vol. 20, no. 1, pp. 141–148, 2012.
[42]
http://www.zeonex.com/.
[43]
G. Emiliyanov, J. B. Jensen, O. Bang et al., “Localized biosensing with Topas microstructured polymer optical fiber,” Optics Letters, vol. 32, no. 5, pp. 460–462, 2007.
[44]
http://www.topas.com/products-topas_coc.
[45]
M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Japanese Journal of Applied Physics, Part 2, vol. 43, no. 2 B, pp. L317–L319, 2004.
[46]
H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Applied Physics Letters, vol. 80, no. 15, pp. 2634–2636, 2002.
[47]
J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” Journal of the Optical Society of America B, vol. 28, no. 5, pp. 1013–1018, 2011.
[48]
K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Optics Express, vol. 17, no. 10, pp. 8592–8601, 2009.
[49]
Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Materials, vol. 1, pp. 22–28, 2009.
[50]
S. Kondo, T. Ishigure, and Y. Koike, “Fabrication of polymer photonic crystal fiber,” in Proceedings of the Micro-Optics Conference (MOC '11), vol. 10, p. B-7, 2004.
[51]
http://www.agcce.com/CYTOP/TechInfo.asp.
[52]
G. De Los Reyes, A. Quema, C. Ponseca Jr. et al., “Low-loss single-mode terahertz waveguiding using Cytop,” Applied Physics Letters, vol. 89, no. 21, Article ID 211119, 2006.
[53]
A. Kondo, T. Ishigure, and Y. Koike, “Low-loss and high-bandwidth deuterated PMMA based graded-index polymer optical fiber,” in Proceedings of the International Conference on Plastic Optical Fibers, pp. 285–292, 2004.
[54]
E. H. Min, K. H. Wong, E. Setijadi, F. Ladouceur, M. Straton, and A. Argyros, “Menthol-based chiral copolymers for polymer optical fibers (POF),” Polymer Chemistry, vol. 2, no. 9, pp. 2045–2051, 2011.
[55]
L. Poladian, M. Straton, A. Docherty, and A. Argyros, “Pure chiral optical fibres,” Optics Express, vol. 19, no. 2, pp. 968–980, 2011.
[56]
A. Dupuis, N. Guo, Y. Gao et al., “Prospective for biodegradable microstructured optical fibers,” Optics Letters, vol. 32, no. 2, pp. 109–111, 2007.
[57]
M. C. J. Large, S. Ponrathnam, A. Argyros, N. S. Pujari, and F. Cox, “Solution doping of microstructured polymer optical fibres,” Optics Express, vol. 12, no. 9, pp. 1966–1971, 2004.
[58]
K. Li, X. Yang, L. Wang, and W. Zhao, “Dye-doped microstructured polymer optical fibre laser with high numerical aperture air-clad,” in Proceedings of the Conference on Lasers and Electro-Optics, CML4, 2007.
[59]
Y. Zhang, K. Li, L. Wang et al., “Casting preforms for microstructured polymer optical fibre fabrication,” Optics Express, vol. 14, no. 12, pp. 5541–5547, 2006.
[60]
H. C. Y. Yu, A. Argyros, G. Barton et al., “Quantum dot and silica nanoparticle doped polymer optical fibers,” Optics Express, vol. 15, no. 16, pp. 9989–9994, 2007.
[61]
H. C. Y. Yu, M. A. Van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Applied Optics, vol. 47, no. 35, pp. 6497–6501, 2008.
[62]
H. C. Y. Yu, A. Argyros, S. G. Leon-Saval, A. Fuerbach, A. Efimov, and G. W. Barton, “Emission properties of quantum dots in polymer optical fibres,” Optics Express, vol. 17, no. 24, pp. 21344–21349, 2009.
[63]
H. C. Y. Yu, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Temperature effects on emission of quantum dots embedded in polymethylmethacrylate,” Applied Optics, vol. 49, no. 15, pp. 2749–2752, 2010.
[64]
G. Barton, M. A. Van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Optical Fiber Technology, vol. 10, no. 4, pp. 325–335, 2004.
[65]
A. Argyros, I. M. Bassett, M. A. Van Eijkelenborg et al., “Ring structures in microstructured polymer optical fibres,” Optics Express, vol. 9, no. 13, pp. 813–820, 2001.
[66]
H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fibre,” Optics Communications, vol. 273, no. 1, pp. 133–137, 2007.
[67]
A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Optics Express, vol. 15, no. 12, pp. 7713–7719, 2007.
[68]
A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Optics Express, vol. 16, no. 8, pp. 5642–5648, 2008.
[69]
A. Argyros, S. G. Leon-Saval, and M. A. van Eijkelenborg, “Twin-hollow-core optical fibres,” Optics Communications, vol. 282, no. 9, pp. 1785–1788, 2009.
[70]
B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature, vol. 420, no. 6916, pp. 650–653, 2002.
[71]
B. Gauvreau, N. Guo, K. Schicker et al., “Color-changing and color-tunable photonic bandgap fiber textiles,” Optics Express, vol. 16, no. 20, pp. 15677–15693, 2008.
[72]
A. F. Abouraddy, M. Bayindir, G. Benoit et al., “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Materials, vol. 6, no. 5, pp. 336–347, 2007.
[73]
J. J. Kaufman, G. Tao, S. Shabahang et al., “Structured spheres generated by an in-fibre fluid instability,” Nature, vol. 487, pp. 463–467, 2012.
[74]
T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. De Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Optics Express, vol. 18, no. 25, pp. 25556–25566, 2010.
[75]
A. Tuniz, B. T. Kuhlmey, R. Lwin et al., “Drawn metamaterials with plasmonic response at terahertz frequencies,” Applied Physics Letters, vol. 96, no. 19, Article ID 191101, 2010.
[76]
A. Tuniz, R. Lwin, A. Argyros et al., “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Optics Express, vol. 19, no. 17, pp. 16480–16490, 2011.
[77]
N. Singh, A. Tuniz, R. Lwin et al., “Fiber-draw double split ring resonators in the terahertz range,” Optical Materials Express, vol. 2, no. 9, pp. 1254–1259, 2012.
[78]
G. F. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Physical Review, vol. 23, no. 5, pp. 655–660, 1924.
[79]
S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers—part I: problem formulation and numerical modeling of transient draw process,” Journal of Lightwave Technology, vol. 23, no. 7, pp. 2245–2254, 2005.
[80]
S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers—part II: numerical modeling of steady-state draw process,” Journal of Lightwave Technology, vol. 23, no. 7, pp. 2255–2266, 2005.
[81]
S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” Journal of Lightwave Technology, vol. 24, no. 2, pp. 853–860, 2006.
[82]
S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” International Journal of Heat and Mass Transfer, vol. 50, no. 7-8, pp. 1569–1576, 2007.
[83]
S. C. Xue, R. Lwin, G. W. Barton, L. Poladian, and M. C. J. Large, “Transient heating of PMMA preforms for microstructured optical fibers,” Journal of Lightwave Technology, vol. 25, no. 5, pp. 1177–1183, 2007.
[84]
J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800?nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000.
[85]
F. R?ser, J. Rothhard, B. Ortac et al., “131?W 220?fs fiber laser system,” Optics Letters, vol. 30, no. 20, pp. 2754–2756, 2005.
[86]
J. Limpert, O. Schmidt, J. Rothhardt et al., “Extended single-mode photonic crystal fiber lasers,” Optics Express, vol. 14, no. 7, pp. 2715–2720, 2006.
[87]
A. Tünnermann, T. Schreiber, F. R?ser et al., “The renaissance and bright future of fibre lasers,” Journal of Physics B, vol. 38, no. 9, pp. S681–S693, 2005.
[88]
A. Argyros, M. A. Van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Microstructured polymer fiber laser,” Optics Letters, vol. 29, no. 16, pp. 1882–1884, 2004.
[89]
A. Argyros, M. A. van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Reply to comment on: a microstructured polymer fiber laser,” Optics Letters, vol. 30, no. 14, pp. 1829–1830, 2005.
[90]
H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. Van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- And single-mode microstructured polymer optical fibers,” Optics Letters, vol. 30, no. 24, pp. 3296–3298, 2005.
[91]
M. P. Hiscocks, M. A. Van Eijkelenborg, A. Argyros, and M. C. J. Large, “Stable imprinting of long-period gratings in microstructured polymer optical fibre,” Optics Express, vol. 14, no. 11, pp. 4644–4649, 2006.
[92]
M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Measurement Science and Technology, vol. 20, no. 3, Article ID 034014, 2009.
[93]
M. C. J. Large, D. Blacket, and C. A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sensors Journal, vol. 10, no. 7, pp. 1213–1217, 2010.
[94]
M. Steffen, M. Schukar, J. Witt, K. Krebber, M. Large, and A. Argyros, “Investigation of mPOF LPGs for sensing applications,” in Proceedings of the International Conference on Plastic Optical Fibres, paper 25, p. 26, 2009.
[95]
G. Durana, J. Gomez, G. Aldabaldetreku, J. Zubia, A. Montero, and I. Saez de Ocariz, “Assessment of an LPG mPOF for strain sensing,” IEEE Sensors Journal, vol. 12, no. 8, pp. 2668–2673, 2012.
[96]
A. Argyros, S. G. Leon-Saval, R. Lwin et al., “Polymer optical fibres: conventional and microstructured fibres,” in Fiber Lasers IX: Technology, Systems, and Applications, vol. 8237 of Proceedings of SPIE, 2012.
[97]
J. Witt, M. Breithaupt, J. Erdmann, and K. Krebber, “Humidity sensing based on microstructured POF long period gratings,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 409–414, 2011.
[98]
D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sensors Journal, vol. 10, no. 7, pp. 1169–1173, 2010.
[99]
M. A. Van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Optics Communications, vol. 236, no. 1–3, pp. 75–78, 2004.
[100]
M. M. Werneck, R. C. Allil, D. M. C. Rodrigues et al., “LPG and taper based fiber-optic sensor for index of refraction measurements in biosensor applications,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 545–550, 2011.
[101]
J. Witt, M. Schukar, K. Krebber, J. Demuth, and L. Sasek, “Heart rate sensor for integration into personal protective equipment,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 573–577, 2011.
[102]
K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Optics Express, vol. 15, no. 14, pp. 8844–8850, 2007.
[103]
I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electronics Letters, vol. 46, no. 17, pp. 1217–1218, 2010.
[104]
I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fibre,” in 21st International Conference on Optical Fiber Sensors, vol. 7753 of Proceedings of SPIE, 77536T, 2011.
[105]
D. Barrera, I. P. Johnson, D. J. Webb, B. Van Hoe, G. Van Steenberge, and S. Sales, “Dynamic strain sensor using a VCSEL and a polymer fiber Bragg grating in a multimode fiber,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 563–567, 2011.
[106]
I. P. Johnson, D. J. Webb, K. Kalli et al., “Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” in Optical Sensors and Photonic Crystal Fibers V, vol. 8073 of Proceedings of SPIE, 80732V-1, 2011.
[107]
W. Yuan, L. Khan, D. J. Webb et al., “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Optics Express, vol. 19, no. 20, pp. 19731–19739, 2011.
[108]
I. P. Johnson, W. Yuan, A. Stefani et al., “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electronics Letters, vol. 47, no. 4, pp. 271–272, 2011.
[109]
A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technology Letters, vol. 23, no. 10, pp. 660–662, 2011.
[110]
C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electronics Letters, vol. 46, no. 9, pp. 643–644, 2010.
[111]
A. Othonos and K. Kalli, Fiber Bragg Gratings, Artech House, Norwood, UK, 1999.
[112]
M. A. Van Eijkelenborg, A. Argyros, A. Bachmann et al., “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electronics Letters, vol. 40, no. 10, pp. 592–593, 2004.
[113]
R. Kruglov, S. Loquai, C. A. Bunge, O. Ziemann, B. Schmauss, and J. Vinogradov, “10?Gbit/s short-reach transmission over 35?m large-core graded-index polymer optical fiber,” in Proceedings of the Optical Fiber Communication Conference (OFC '11), OThZ6, March 2011.
[114]
J. Vinogradov, R. Kruglov, S. Loquai, and O. Ziemann, “Multigigabit transmission with blue, green and red laser diodes,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 467–470, 2011.
[115]
R. Lwin, G. Barton, L. Harvey et al., “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Applied Physics Letters, vol. 91, no. 19, Article ID 191119, 2007.
[116]
A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Optics Express, vol. 16, no. 23, pp. 18590–18598, 2008.
[117]
D. Li and L. Wang, “Fluorescence hydrogen peroxide probe based on a microstructured polymer optical fiber modified with a titanium dioxide film,” Applied Spectroscopy, vol. 64, no. 5, pp. 514–519, 2010.
[118]
D. Li and L. Wang, “Cellulose acetate polymer film modified microstructured polymer optical fiber towards a nitrite optical probe,” Optics Communications, vol. 283, no. 14, pp. 2841–2844, 2010.
[119]
C. M. B. Cordeiro, M. A. R. Franco, G. Chesini et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056–13066, 2006.
[120]
F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Optics Express, vol. 15, no. 19, pp. 11843–11848, 2007.
[121]
A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Optics Letters, vol. 34, no. 24, pp. 3890–3892, 2009.
[122]
X. Yang and L. Wang, “Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing,” Optics Communications, vol. 280, no. 2, pp. 368–373, 2007.
[123]
F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Optics Express, vol. 14, no. 9, pp. 4135–4140, 2006.
[124]
F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Optics Express, vol. 15, no. 21, pp. 13675–13681, 2007.
[125]
C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Optics Express, vol. 20, no. 10, pp. 11232–11240, 2012.
[126]
P. J. Roberts, F. Couny, H. Sabert et al., “Ultimate low loss of hollow-core photonic crystal fibres,” Optics Express, vol. 13, no. 1, pp. 236–244, 2005.
[127]
F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Optics Express, vol. 15, no. 2, pp. 325–338, 2007.
[128]
F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science, vol. 298, no. 5592, pp. 399–402, 2002.
[129]
F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Optics Letters, vol. 31, no. 24, pp. 3574–3576, 2006.
[130]
F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, vol. 318, no. 5853, pp. 1118–1121, 2007.
[131]
F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Optics Express, vol. 16, no. 25, pp. 20626–20636, 2008.
[132]
T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. S. J. Russell, “Modelling of a novel hollow-core photonic crystal fibre,” in Proceedings of the Quantum electronics and Laser Science (QELS '03), p. 2, June 2003.
[133]
G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Optics Express, vol. 15, no. 20, pp. 12680–12685, 2007.
[134]
Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Optics Letters, vol. 36, no. 5, pp. 669–671, 2011.
[135]
K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376–379, 2004.
[136]
R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters, vol. 26, no. 11, pp. 846–848, 2001.
[137]
R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Optics Letters, vol. 24, no. 20, pp. 1431–1433, 1999.
[138]
J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Optics Express, vol. 12, no. 21, pp. 5263–5268, 2004.
[139]
A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Applied Physics Letters, vol. 92, no. 7, Article ID 071101, 2008.
[140]
A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Optics Express, vol. 16, no. 9, pp. 6340–6351, 2008.
[141]
S. Atakaramians, V. Shahraam Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Optics Express, vol. 16, no. 12, pp. 8845–8854, 2008.
[142]
S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Optics Communications, vol. 282, no. 1, pp. 36–38, 2009.
[143]
S. Atakaramians, S. V. Afshar, H. Ebendorff-Heidepriem et al., “THz porous fibers: design, fabrication and experimental characterization,” Optics Express, vol. 17, no. 16, pp. 14053–14062, 2009.
[144]
S. Atakaramians, S. Afshar, M. Nagel et al., “Direct probing of evanescent field for characterization of porous terahertz fibers,” Applied Physics Letters, vol. 98, no. 12, Article ID 121104, 2011.
[145]
C. S. Ponseca, R. Pobre, E. Estacio et al., “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Optics Letters, vol. 33, no. 9, pp. 902–904, 2008.
[146]
A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” Journal of the Optical Society of America B, vol. 28, no. 4, pp. 896–907, 2011.
[147]
B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” Journal of the Optical Society of America B, vol. 28, no. 4, pp. 917–921, 2011.
[148]
R. Amezcua-Correa, F. Gér?me, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Optics Express, vol. 16, no. 2, pp. 1142–1149, 2008.
[149]
D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” Journal of Lightwave Technology, vol. 29, no. 1, Article ID 5638593, pp. 93–103, 2011.
[150]
J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Optics Express, vol. 19, no. 19, pp. 18470–18478.
[151]
A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow—core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5?μm,” Optics Express, vol. 19, no. 2, pp. 1441–1448, 2011.
[152]
F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4?μm spectral region,” Optics Express, vol. 20, no. 10, pp. 11153–11158, 2012.
[153]
L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Optical Fiber Technology, vol. 15, no. 4, pp. 398–401, 2009.
[154]
L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photonics Technology Letters, vol. 22, no. 13, pp. 972–974, 2010.
[155]
L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Optics Communications, vol. 283, no. 6, pp. 979–984, 2010.
[156]
L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Optics Express, vol. 18, no. 22, pp. 23133–23146, 2010.
[157]
L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Optics Express, vol. 20, no. 13, pp. 14350–14361, 2012.
[158]
L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” Journal of Lightwave Technology, vol. 30, no. 10, pp. 1470–1474, 2012.
[159]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773–4776, 1996.
[160]
S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Physical Review B, vol. 80, no. 24, Article ID 245101, 2009.
[161]
M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Physical Review B, vol. 77, no. 3, Article ID 033417, 2008.
[162]
J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983–5990, 2008.
[163]
J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical Review B, vol. 69, no. 1, Article ID 014402, pp. 144021–144025, 2004.
[164]
E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Letters, vol. 10, no. 1, pp. 1–5, 2010.
[165]
A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Physical Review Letters, vol. 102, no. 4, Article ID 043904, 2009.
[166]
S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: mode equations and guidance conditions,” Journal of the Optical Society of America B, vol. 29, no. 9, pp. 2462–2477, 2012.
[167]
E. Badinter, A. Ioisher, E. Monaico, V. Postolache, and I. M. Tiginyanu, “Exceptional integration of metal or semimetal nanowires in human-hair-like glass fiber,” Materials Letters, vol. 64, no. 17, pp. 1902–1904, 2010.