全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Terahertz Frequency Continuous-Wave Spectroscopy and Imaging of Explosive Substances

DOI: 10.1155/2013/419507

Full-Text   Cite this paper   Add to My Lib

Abstract:

Continuous-wave terahertz (THz) radiation spectroscopy was performed on high explosive materials using a tuneable optical parametric oscillator (OPO). Military grade, solid-phase, explosive substances, such as cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN), and composition-4, were spectrally scanned over the 0.7–1.9?THz frequency range under experimental conditions modeling that of “real-world” security screenings. Spectral peak locations and spectral line broadening effects were quantified using a Lorentz lineshape fit algorithm. The full-width half-maximum (FWHM) parameter computed by the Lorentz fit algorithm was shown to help in the identification of samples with broad and sparse spectral characteristics. A concealed explosives identification scheme was demonstrated through raster scan THz frequency radiation imaging at specific OPO tuning frequencies. 1. Introduction Terahertz (THz) radiation, typically recognized as the 0.3 to 10?THz frequency region (wavelengths of 1?mm to 30?μm), offers promising solutions to many of the challenges facing modern security and surveillance systems. THz radiation can penetrate most common dielectric materials enabling imaging through plastics, clothing, and cardboard. Since metal strongly reflects THz radiation, concealed metallic weapons can be easily identified via their high contrast shapes and contours within a THz radiation scanned image. Unlike X-rays, THz radiation photon energy is low and non-ionizing (1?THz?=?4?meV) so there are no adverse health effects associated with prolonged exposure [1]. The allure of THz radiation technology for security applications also stems from the fact that the collective intermolecular motions and vibrational transitions of materials, such as explosives and illicit drugs, can be probed with THz frequency radiation [2]. Neither millimeter waves nor infrared (IR) waves have access to these molecular fingerprints. It is envisaged that THz radiation spectroscopy can be incorporated into a holistic security system that enables noninvasive identification of substances according to their THz frequency absorption profile while simultaneously imaging packages or persons for concealed weapons. There have been technological advancements in the development of continuous-wave (CW) THz radiation sources and detectors. Optically pumped THz Lasers (OPTL) [3], Backward-Wave Oscillators (BWO) [4], Photomixers [5], and Quantum Cascade Lasers (QCL) [6] are capable of efficiently generating CW THz radiation while detection of the

References

[1]  M. R. Scarfì, M. Romanò, R. Di Pietro et al., “THz exposure of whole blood for the study of biological effects on human lymphocytes,” Journal of Biological Physics, vol. 29, no. 2-3, pp. 171–177, 2003.
[2]  D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?” Proceedings of the IEEE, vol. 93, no. 10, pp. 1722–1743, 2005.
[3]  M. Inguscio, G. Moruzzi, K. M. Evenson, and D. A. Jennings, “A review of frequency measurements of optically pumped lasers from 0.1 to 8?THz,” Journal of Applied Physics, vol. 60, no. 12, pp. R161–R191, 1986.
[4]  M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Transactions on Electron Devices, vol. 57, no. 6, pp. 1481–1484, 2010.
[5]  E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8?THz in low-temperature-grown GaAs,” Applied Physics Letters, vol. 66, no. 3, pp. 285–287, 1995.
[6]  S. Barbieri, J. Alton, S. S. Dhillon et al., “Continuous-wave operation of terahertz quantum-cascade lasers,” IEEE Journal of Quantum Electronics, vol. 39, no. 4, pp. 586–591, 2003.
[7]  M. J. E. Golay, “Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector,” Review of Scientific Instruments, vol. 18, no. 5, pp. 347–356, 1947.
[8]  P. L. Richards, “Bolometers for infrared and millimeter waves,” Journal of Applied Physics, vol. 76, no. 1, pp. 1–24, 1994.
[9]  D. Mittleman, Sensing with Terahertz Radiation, pp. 40–43, Springer, GmbH & Co. KG, Berlin, Germany, 2010.
[10]  H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1514–1527, 2007.
[11]  R. W. Tribe, A. D. Newnham, F. P. Taday, and C. M. Kemp, “Hidden object detection: security applications of terahertz technology,” Proceedings of the Society of Photo Optical Instrumentation Engineers, vol. 5354, pp. 168–176, 2004.
[12]  J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 4, pp. 653–661, 2000.
[13]  J. F. Federici, B. Schulkin, F. Huang et al., “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semiconductor Science and Technology, vol. 20, no. 7, pp. S266–S280, 2005.
[14]  H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Optics Express, vol. 14, no. 1, pp. 415–423, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133