全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Fossilized Teeth as a New Robust and Reproducible Standard for Polarization-Sensitive Optical Coherence Tomography

DOI: 10.1155/2013/391972

Full-Text   Cite this paper   Add to My Lib

Abstract:

A clinical need exists for a cheap and efficient standard for polarization sensitive optical coherence tomography (PS-OCT). We utilize prehistoric fossilized teeth from the Megalodon shark and European horse as an unconventional, yet robust standard. Given their easy accessibility and the microstructural consistency conferred by the process of fossilization, they provide a means of calibration to reduce error from sources such as catheter bending and temperature changes. We tested the maximum difference in birefringence values in each tooth and found the fossilized teeth to be fast and repeatable. The results were compared to measurements from bovine meniscus, tendon, and destroyed tendon, which were verified with histology. 1. Introduction Polarization-sensitive optical coherence tomography (PS-OCT) is a micron-scale imaging/spectroscopic modality capable of assessing organized structure in biological tissues through birefringence [1]. Day-to-day variation in the imaging systems limits the precision of repeated measurements, requiring the need for standards. The sources for variation are numerous, including the movement of fiber optic components within the system or catheter/endoscope, and are prominent in producing error [2, 3]. Preventing this variation by checking and recalibrating the system using a cheap, widely accessible standard would greatly increase the robustness of imaging. Reproducible standards have been difficult to achieve. In this paper, we have found an unusual standard, fossilized prehistoric marine vertebrate (predominately megalodon) and dinosaur teeth. Being at least 10’s of millions of years old, their microstructure and birefringence have been stabilized with time [4]. We compare their results to the OCT imaging of birefringent tendon and cartilage, validating the results with histopathology. Optical coherence tomography is an imaging modality analogous to ultrasound, using low-coherence interferometry to measure the backreflection of infrared light rather than sound [5]. Already approved in both cardiology and ophthalmology for clinical imaging, OCT functions above video rate and at resolutions up to 25x higher than any other clinical imaging modality [6]. With respect to the single channel PS-OCT modality, as highly organized tissue is typically birefringent, it modifies the incident light polarization state, resulting in variations in the backreflection intensity. As early diseases progresses, birefringent materials such as collagen or enamel become disorganized, leading to a loss of birefringence. This occurs long before the

References

[1]  B. Liu, M. Harman, S. Giattina et al., “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Applied Optics, vol. 45, no. 18, pp. 4464–4479, 2006.
[2]  K. Zheng, C. Rashidifard, B. Liu, and M. E. Brezinski, “Comparison of artifact generation with catheter bending using different PS-OCT approaches,” Reports in Medical Imaging, vol. 2, pp. 49–54, 2009.
[3]  B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” Journal of the Optical Society of America A, vol. 22, no. 2, pp. 262–271, 2005.
[4]  R. F. Klinge, M. C. Dean, S. Risnes, M. Erambert, and A. E. Gunnaes, “Preserved microstructure and mineral distribution in tooth and periodontal tissues in early fossil hominin material from Koobi Fora, Kenya,” Frontiers of Oral Biology, vol. 13, pp. 30–35, 2009.
[5]  D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.
[6]  M. E. Brezinski, Optical Coherence Tomography, Principles and Applications, Academic Press, 2006.
[7]  S. D. Giattina, B. K. Courtney, P. R. Herz et al., “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” International Journal of Cardiology, vol. 107, no. 3, pp. 400–409, 2006.
[8]  W. Drexler, D. Stamper, C. Jesser et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” Journal of Rheumatology, vol. 28, no. 6, pp. 1311–1318, 2001.
[9]  J. M. Herrmann, C. Pitris, B. E. Bouma et al., “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” Journal of Rheumatology, vol. 26, no. 3, pp. 627–635, 1999.
[10]  J. B. Herrick, “Clinical features of sudden obstruction of the coronary arteries,” The Journal of the American Medical Association, vol. 59, pp. 2015–2020, 1983.
[11]  F. D. Kolodgie, A. P. Burke, A. Farb et al., “The thin-cap fibroatheroma: a type of vulnerable plaque the major precursor lesion to acute coronary syndromes,” Current Opinion in Cardiology, vol. 16, no. 5, pp. 285–292, 2001.
[12]  B. Liu, C. Vercollone, and M. E. Brezinski, “Towards improved collagen assessment: polarization-sensitive optical coherence tomography with tailored reference arm polarization,” International Journal of Biomedical Imaging, vol. 2012, Article ID 892680, 10 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133