Theoretical and numerical analysis of the transmission function of the focusing system with high numerical aperture was conducted. The purpose of the study was to form a thin light tube in a focal area using the azimuthally polarized radiation. It was analytically shown that, due to destructive interference of two beams formed by two narrow rings, it is possible to overcome not only the full aperture diffraction limit but also the circular aperture limit. In this case, however, the intensity at the center of the focal plane is significantly reduced, which practically leads to the tube rupture. It was numerically shown that long thin one-piece tubes may be formed through the aperture apodization with diffractive axicon phase function or with complex transmission function of Laguerre-Gaussian or Airy-Gaussian beams. 1. Introduction Introducing a narrow annular aperture to the tightly focused cylindrical beams with radial or azimuthal polarization, the blocking light in almost all central parts of the lens [1–3] is a simple but energetically expensive way of forming long narrow beams in the focal region. In the case of radial polarization a thin thread of light is formed, while in the azimuthal polarization a light tube is formed. Moreover, the transverse dimension corresponds to the scalar diffraction limit. In other types of polarization the focal spot (or ring) is larger because of the contribution of the various components of the electromagnetic field to the focal region. To increase the efficiency and overcome the diffraction limit more sophisticated ways of full aperture apodization of function are used. It can be either a pure phase or an amplitude-phase distribution [4–9]. Thus, as a rule, reducing the focal spot size is accompanied by the redistribution of energy from the central part to the sidelobes. This situation is consistent with the Toraldo di Francia theory [10], according to which possible to obtain infinitely narrow central spot due to the growth of sidelobes. But this growth is sometimes several times [8, 9] or even orders [11] higher than the reducing of central light spot. The presence of significant sidelobes limits the use of “super-resolution” elements in representing systems and optical data recording, when the acceptable intensity level in the sidelobes is less than 30% with respect to the central peak [12]. However, the optimization procedures controlling the growth of the sidelobes lead to the inevitable broadening of the central spot size [12, 13]. It was shown in [14] that the introduction of the radial phase jump on radians
References
[1]
S. Quabis, R. Dorn, M. Eberler, O. Gl?ckl, and G. Leuchs, “Focusing light to a tighter spot,” Optics Communications, vol. 179, no. 1, pp. 1–7, 2000.
[2]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Physical Review Letters, vol. 91, no. 23, Article ID 233901, 2003.
[3]
C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Applied Optics, vol. 43, no. 22, pp. 4322–4327, 2004.
[4]
L. E. Helseth, “Mesoscopic orbitals in strongly focused light,” Optics Communications, vol. 224, no. 4–6, pp. 255–261, 2003.
[5]
C.-C. Sun and C.-K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Optics Letters, vol. 28, no. 2, pp. 99–101, 2003.
[6]
Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” Journal of the Optical Society of America A, vol. 24, no. 6, pp. 1793–1798, 2007.
[7]
H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nature Photonics, vol. 2, no. 8, pp. 501–505, 2008.
[8]
S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” Journal of the Optical Society of America A, vol. 27, no. 10, pp. 2188–2197, 2010.
[9]
S. N. Khonina, A. V. Ustinov, and E. A. Pelevina, “Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system,” Journal of Optics, vol. 13, no. 9, Article ID 095702, 13 pages, 2011.
[10]
G. T. di Francia, “Degrees of freedom of an image,” Journal of the Optical Society of America, vol. 59, no. 7, pp. 799–804, 1969.
[11]
F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Letters, vol. 9, no. 3, pp. 1249–1254, 2009.
[12]
T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” Journal of the Optical Society of America A, vol. 14, no. 7, pp. 1637–1646, 1997.
[13]
S. N. Khonina and I. Golub, “Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation,” The Journal of the Optical Society of America A, vol. 29, no. 7, pp. 1470–1474, 2012.
[14]
S. N. Khonina and A. V. Ustinov, “Sharper focal spot for a radially polarized beam using ring aperture with phase jump,” Journal of Engineering, vol. 2013, Article ID 512971, 8 pages, 2013.
[15]
J. Bewersdorf, A. Egner, and S. W. Hell, “4pi-confocal microscopy is coming of age,” Imaging & Microscopy, vol. 4, pp. 24–25, 2004.
[16]
L. E. Helseth, “Breaking the diffraction limit in nonlinear materials,” Optics Communications, vol. 256, no. 4–6, pp. 435–438, 2005.
[17]
N. Bokor and N. Davidson, “Tight parabolic dark spot with high numerical aperture focusing with a circular π phase plate,” Optics Communications, vol. 270, no. 2, pp. 145–150, 2007.
[18]
H.-R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Physics Report, vol. 372, no. 3, pp. 269–317, 2002.
[19]
V. A. Soifer, V. V. Kotlyar, and S. N. Khonina, “Optical microparticle manipulation: advances and new possibilities created by diffractive optics,” Physics of Particles and Nuclei, vol. 35, no. 6, pp. 733–766, 2004.
[20]
Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Optics Express, vol. 20, no. 16, pp. 17653–17666, 2012.
[21]
S. N. Khonina and I. Golub, “How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy,” The Journal of the Optical Society of America A, vol. 29, no. 10, pp. 2242–2246, 2012.
[22]
B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Optics Letters, vol. 36, no. 11, pp. 2014–2016, 2011.
[23]
K. Lalithambigai, P. Suresh, V. Ravi et al., “Generation of sub wavelength super-long dark channel using high NA lens axicon,” Optics Letters, vol. 37, no. 6, pp. 999–1001, 2012.
[24]
W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Optics Communications, vol. 265, no. 2, pp. 411–417, 2006.
[25]
X. Gao, J. Wang, H. Gu, and W. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik, vol. 118, no. 6, pp. 257–265, 2007.
[26]
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Courier Dover Publications, 1972.
[27]
S. N. Khonina, N. L. Kazanskiǐ, A. V. Ustinov, and S. G. Volotovskiǐ, “The lensacon: nonparaxial effects,” Journal of Optical Technology A, vol. 78, no. 11, pp. 724–729, 2011.
[28]
S. N. Khonina, “Specular and vortical Airy beams,” Optics Communications, vol. 284, no. 19, pp. 4263–4271, 2011.