全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Perturbation Analysis with Approximate Integration for Propagation Mode in Two-Dimensional Two-Slab Waveguides

DOI: 10.1155/2013/108704

Full-Text   Cite this paper   Add to My Lib

Abstract:

On the basis of perturbation expansion from a gapless system, we calculate the propagation constant and propagation mode wave function in two-dimensional two-slab waveguides with a core gap small enough that there is only one propagation mode. We also perform calculations without the approximation for comparison. Our result shows that first-order perturbation contains the first-order Taylor expansion of (core gap)/(core width), and when the integration of the perturbation is suitably approximated, the result of the first-order perturbation is the same as that of the first-order Taylor expansion of (core gap)/(core width). 1. Introduction When monochromatic light enters into one of the cores of a waveguide array in which each core has the same width and the same gap, the light propagates to adjacent cores in turn, and its trajectory becomes V-shaped. Such optical behavior has been theoretically and numerically analyzed. Theoretical analysis includes matrix method [1], the coupled mode equation, and the coupled power equation [2–9]. In the coupling mode equations, it is assumed that there is at least one propagation mode for each core and that all of the propagation modes are independent from each other. This assumption is invalid in the case that the number of independent propagation modes is less than the number of cores. Such a situation can occur when the core gap becomes small enough that the index distribution is approximated by a gapless core. When such a situation occurs, analysis based on the coupled mode or the coupled power equation is invalid. Our interest is finding a simple method to analyze an optical behavior in such a situation. An optical behavior for parallel slab waveguides with small core gap was theoretically analyzed using even and odd mode analysis, which was called supermode analysis later [3–5]. In this analysis, the exact solution for the Maxwell’s equations with the index distribution for two parallel slab waveguides, which becomes essentially one for Schr?dinger equation for double finite wells in the field of quantum mechanics, is used to analyze the optical behavior. However, the method using supermodes is not useful when the number of cores increases, because the solution must be individually expressed in every core and clad. In the field of quantum mechanics, perturbation theory is widely used as an approximation [10, 11]. In the field of electromagnetics and optics, it is also explained in [12], and applied to explain bend losses for a fiber [13, 14]. Coupled mode equation is also based on the perturbation theory [4–7].

References

[1]  A. Ghatak and V. Lakshminarayanan, “Propagation characteristics of planar waveguides,” in Optical Waveguides from Theory to Applied Technologies, M. L. Calvo and V. Lakshminarayanan, Eds., p. CRC press, New York, NY, USA, 2007.
[2]  A. Yariv, “Coupling-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. QE-9, no. 9, pp. 919–933, 1973.
[3]  Y. Suematsu and K. Kishino, “Coupling coefficient in strongly coupled dielectric waveguides,” Radio Science, vol. 12, no. 4, pp. 587–592, 1977.
[4]  A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” Journal of Lightwave Technology, vol. 3, no. 5, pp. 1135–1146, 1985.
[5]  A. Hardy and W. Streifer, “Coupled modes of multiwaveguide system and phased arrays,” Journal of Lightwave Technology, vol. 4, no. 1, pp. 90–99, 1986.
[6]  H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” Journal of Lightwave Technology, vol. 5, no. 1, pp. 16–23, 1987.
[7]  K. Yasumoto, “Coupled-mode formulation of parallel dielectric waveguides using singular perturbation technique,” Microwave and Optical Technology Letters, vol. 4, no. 11, pp. 486–491, 1991.
[8]  H. Yoshida, K. Hidaka, and N. Tsukada, “Proposal of optical waveguide array beam splitter and Mach-Zehnder optical interferometer,” IEICE Technical Report OCS2010-36, 2010.
[9]  A. Komiyama, “Energy conservation in a waveguide system with an imperfection core,” The Papers of Technical Meeting on Electromagnetic Theory, IEEJ, EMT-11-131, 2011.
[10]  L. I. Shiff, Quantum Mechanics, Mc-Graw Hill, Singapore, 1969.
[11]  W. Greiner, Quantum Mechanics—An Introduction, Springer, Berlin, Germany, 1989.
[12]  R. F. Harrington, Time-Harmonic Electromagnetic Fields, Wiley-Interscience, New York, NY, USA, 2001.
[13]  C. Vassallo, “Perturbation of a LP mode of an optical fibre by a quasi-degenerate field: a simple formula,” Optical and Quantum Electronics, vol. 17, no. 3, pp. 201–205, 1985.
[14]  Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend Losses for standard single mode fibers,” Optics Express, vol. 13, no. 12, pp. 4476–4484, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133