全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

A Modified Structure for All-Glass Photonic Bandgap Fibers: Dispersion Characteristics and Confinement Loss Analysis

DOI: 10.1155/2013/416537

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates a modified structure for all-glass photonic bandgap fiber (AGPBF) having up-doped silica rods in the cladding region instead of air holes using plane wave expansion (PWE) and finite difference time domain (FDTD) methods. The proposed AGPBF structure exhibits tunable dispersion properties and improved confinement loss. It is observed that the confinement loss can be reduced simply by using a higher doping concentration in silica rods in the cladding. Also, it is possible to achieve flattened dispersion of the order of 1?ps/nm/km over a wide wavelength range. 1. Introduction Photonic bandgap fibers (PBFs) have the most basic and original structure in the large family of photonic crystal fibers (PCFs) [1, 2], as the light in these structures is confined in a low index core compared to all the other fibers. In PBF, light is confined to the core by the photonic bandgap effect (PBG), instead of total internal reflection. Hollow-core PBF (HC-PBF) with air holes in a glass background allows low-loss propagation in an empty core, giving the fibers several interesting properties and applications [3]. Since much of the optical power in PBFs can travel in air and not in the glass, they do not suffer from the same limitations to loss as conventional fibers and can exhibit radically reduced optical nonlinearity, making them promising candidates for future ultralow loss transmission fibers [4]. The fabrication of the hollow core photonic bandgap fiber with required specification is difficult due to air-hole deformation and measured losses are more. In order to decrease the confinement loss, we need to accommodate more number of air holes in the given cladding region. Further, to satisfy this condition, the interhole spacing should be minimum, which causes the merger of the adjacent air holes. Confinement loss in triangular air-guiding PBFs has been discussed in [5], and it is concluded that, with ( and are the air-hole diameter and interhole spacing, resp.), at least 20 rings of air holes that are totally 1380 air holes are required to reduce the confinement loss to a level of 0.01?dB/km. Confinement loss in air-core PBF having 8 rings of (totally 264) circular air holes has been analyzed, and the confinement loss can be reduced to lower than 0.01?dB/km with [6]. However, it is very difficult to make air-core PBF with so many air holes in the former case and so high for circular air holes in the latter case, respectively. Confinement loss can be reduced by increasing the air-filling fraction of PBF; the air-filling fractions in [5] is 73%,

References

[1]  J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, no. 5393, pp. 1476–1478, 1998.
[2]  R. F. Cregan, B. J. Mangan, J. C. Knight et al., “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, no. 5433, pp. 1537–1539, 1999.
[3]  G. Bouwmans, F. Luan, J. C. Knight et al., “Properties of a hollow-core photonic bandgap fiber at 850?nm wavelength,” Optics Express, vol. 11, no. 14, pp. 1613–1620, 2003.
[4]  M. S. Charlene, N. Venkataraman, T. G. Michael et al., “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature, vol. 424, no. 6949, pp. 657–659, 2003.
[5]  K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 236–238, 2003.
[6]  Y. Xu and A. Yariv, “Loss analysis of air-core photonic crystal fibers,” Optics Letters, vol. 28, no. 20, pp. 1885–1887, 2003.
[7]  D. Pysz, R. St?pień, P. Szarniak, R. Buczyński, and T. Szoplik, “Comparing characteristics and prospects of fabrication of multicomponent photonic crystal fibres with different lattice structures,” in Proceedings of the SPIE, Lightguides and Their Applications II, (TAL '03), vol. 5576, pp. 74–80, October 2003.
[8]  H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8μm wavelength region,” IEEE Photonics Technology Letters, vol. 1, no. 6, pp. 142–145, 1989.
[9]  S. Barkou, J. Broeng, and A. Bjarklev, “Dispersion properties of photonic bandgap guiding fibers,” in Proceedings of the Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication (OFC/IOOC '99). Technical Digest, vol. 4, pp. 117–119, 1999.
[10]  Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipocs, “Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers,” Optics Express, vol. 16, no. 20, pp. 15603–15616, 2008.
[11]  J. Riishede, J. L?gsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730?nm,” Journal of Optics A, vol. 6, no. 7, pp. 667–670, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133