全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Numerical Analysis of Ridged-Circular Nanoaperture for Near-Field Optical Disk

DOI: 10.1155/2013/543960

Full-Text   Cite this paper   Add to My Lib

Abstract:

A ridged-circular nanoaperture is investigated through three-dimensional (finite-difference time-domain) FDTD method. The motion equations of free electrons are inserted to analyze a metallic material. The electromagnetic field distributions of optical near-field around the aperture are investigated. The phase change disk illuminated by a near-field optical light through a ridged-circular nanoaperture is also analyzed. The far-field scattering patterns from the phase change disk and the crosstalk characteristics between plural marks are studied. 1. Introduction The recording density of conventional optical recording systems has an optical diffraction limit. Recently, there has been a lot of interest in the field of optical storage technologies for the recording methods that are based on near-field optical principles. This is because they have the potential to overcome the limitation by using the localized optical near-field for writing and reading recorded marks. Many types of nanoapertures and nanoantennas have been proposed to achieve the high throughput of the optical near-field [1–4]. This study focuses on a ridged-circular nanoaperture for a near-field optical disk. The analysis is accomplished by the FDTD method into which the motion equations of free electrons are inserted [5–7]. This method can easily deal with Drude dispersion and it can be applied to the analysis of various plasmonic devices. First, the electromagnetic field distributions of optical near-field around the ridged-circular nano-aperture are analyzed. Next, the scattering characteristics from a phase change disk with the aperture are studied. Finally, the crosstalk characteristics between plural marks are discussed. 2. FDTD Formulation In the FDTD method, special handling of the metallic material is required because the permittivity is dispersive and has a negative value in the optical frequency. In this study, the following motion equation is introduced into the FDTD method to evaluate the conducting current: where is the electron velocity, is the electric field, is the elementary electric charge, is the electron mass, and is the collision frequency. The collision frequency is expressed as follows: where is the angular frequency of a light wave and and are the real and imaginary parts, respectively, of the complex refractive index of a metallic material ( ). Maxwell’s equations are expressed as follows by representing the current density using the electron velocity and the electron density : where is the magnetic field and and are the electric permittivity and magnetic

References

[1]  S. Omodani, T. Saiki, and M. Obara, “Metallic slit aperture as a near-field optical head for heat-assisted magnetic recording,” Journal of Applied Physics, vol. 105, no. 1, Article ID 013101, 2009.
[2]  Y.-M. Wu, L.-W. Li, and B. Liu, “Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and far-field radiation,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1918–1921, 2010.
[3]  L. Scorrano, F. Bilotti, and L. Vegni, “Achieving power transmission enhancement by using nano-rings made of silver spheres,” IEEE Photonics Technology Letters, vol. 22, no. 21, pp. 1595–1597, 2010.
[4]  K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” Journal of Applied Physics, vol. 109, no. 7, Article ID 07B735, 2011.
[5]  S. Kagawa, Y. He, and O. Kojima, “Two-dimensional FDTD analysis of the readout characteristics of an optical near field disk,” IEICE Transactions on Electronics, vol. E91-C, no. 1, pp. 48–55, 2008.
[6]  T. Kitamura and S. Iwata, “Analysis of a near-field optical disk with an acute-edged metallic nano-aperture,” IEICE Transactions on Electronics, vol. E93-C, no. 9, pp. 1474–1477, 2010.
[7]  T. Kitamura, “FDTD analysis of a near-field optical disk with a ridged-square nano-apertre,” IEICE Transactions on Electronics, vol. E95-C, no. 6, pp. 1110–1116, 2012.
[8]  Y. He, T. Kojima, T. Uno, and S. Adachi, “FDTD analysis of three-dimensional light-beam scattering from the magneto-optical disk structure,” IEICE Transactions on Electronics, vol. E81-C, no. 12, pp. 1881–1887, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133