全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Circular Photonic Crystal Fibers: Numerical Analysis of Chromatic Dispersion and Losses

DOI: 10.1155/2013/986924

Full-Text   Cite this paper   Add to My Lib

Abstract:

Detailed numerical analysis for dispersion properties and losses has been carried out for a new type of Photonic crystal fiber where the air-holes are arranged in a circular pattern with a silica matrix called as Circular Photonic Crystal Fiber (C-PCF). The dependence of different PCF geometrical parameters namely different circular spacings, air-hole diameter and numbers of air-hole rings are carried out in detail towards practical applications. Our numerical analysis establishes that total dispersion is strongly affected by the interplay between material dispersion and waveguide dispersion. For smaller air-filing fraction, adding extra air-hole rings does not change dispersion much whereas for higher air-filling fraction, the dispersion nature changes significantly. With proper adjustment of the parameters ultra-flattened dispersion could be achieved; though the application can be limited by higher losses. However, the ultra-flat dispersion fibers can be used for practical high power applications like supercontinuum generation (SCG) by reducing the loss at the pumping wavelength by increasing the no of air-hole rings. Broadband smooth SCG can also be achieved with low loss oscillating near-zero dispersion fiber with higher no of air-hole rings. The detail study shows that for realistic dispersion engineering we need to be careful for both loss and dispersion. 1. Introduction Photonic crystal fibers (PCFs) or microstructured optical fibers (MOFs) [1, 2] are special types of optical fiber where air holes are arranged in a periodic nature in the cladding. These types of fibers possess some novel guiding properties, related to the geometric characteristics of the air holes in their cross-section and have been successfully exploited in different applications [1, 2]. Most of the air holes in the PCFs cladding have been arranged either in a periodic triangular or periodic square orientation. The modal properties, in particular, and the dispersion properties of the above types of PCFs can be altered by varying the hole-to-hole spacing ( ) and the air hole diameter ( ) with air-filling fraction being [3, 4]. Both types of PCFs with a silica background can be successfully implemented to compensate the positive dispersion parameter and dispersion slope of the existing inline fibers [3, 4]. These fibers can be engineered for designing ultraflattened near-zero dispersion [5–7] or can be engineered to have ultranegative dispersion values near the communication wavelength [8–10]. Recently, there have been new types of cross-sectional geometry where air holes are

References

[1]  J. C. Knight, “Photonic crystal fibers,” Nature, vol. 424, pp. 847–851, 2003.
[2]  P. S. J. Russell, “Photonic-crystal fibers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4729–4749, 2006.
[3]  B. T. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Applied Optics, vol. 42, no. 4, pp. 634–639, 2003.
[4]  A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Optics Express, vol. 12, no. 5, pp. 941–946, 2004.
[5]  W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Optics Express, vol. 10, no. 14, pp. 609–613, 2002.
[6]  K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Optics Express, vol. 11, no. 8, pp. 843–852, 2003.
[7]  P. S. Maji and P. R. Chaudhuri, “A new design of ultra-flattened near-zero dispersion PCF using selectively liquid infiltration,” Journal of Photonics and Optoelectronics, vol. 2, pp. 25–32, 2013.
[8]  X. Zhao, G. Zhou, L. Shuguang et al., “Photonic crystal fiber for dispersion compensation,” Applied Optics, vol. 47, no. 28, pp. 5190–5196, 2008.
[9]  S. Yang, Y. Zhang, X. Peng et al., “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Optics Express, vol. 14, no. 7, pp. 3015–3023, 2006.
[10]  F. Gér?me, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Optics Letters, vol. 29, no. 23, pp. 2725–2727, 2004.
[11]  W. D. Ho, T. W. Lu, Y. H. Hsiao, and P. T. Lee, “Thermal properties of 12-fold quasi-photonic crystal microcavity laser with size-controlled nano-post for electrical driving,” Journal of Lightwave Technology, vol. 27, no. 23, pp. 5302–5307, 2009.
[12]  N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno, and H. Miyazaki, “High-transmission waveguide with a small radius of curvature at a bend fabricated by use of a circular photonic crystal,” Optics Letters, vol. 30, no. 9, pp. 973–975, 2005.
[13]  P. T. Lee, T. W. Lu, J. H. Fan, and F. M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Applied Physics Letters, vol. 90, no. 15, Article ID 151125, 2007.
[14]  W. Zhong and X. Zhang, “Localized modes in defect-free two-dimensional circular photonic crystals,” Physical Review A, vol. 81, no. 1, Article ID 013805, 6 pages, 2010.
[15]  H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” Journal of Optics, vol. 13, no. 5, Article ID 055405, 2011.
[16]  A. Argyros, I. M. Bassett, M. A. van Eijkelenborg et al., “Ring structures in microstructured polymer optical fibres,” Optics Express, vol. 9, no. 13, pp. 813–820, 2001.
[17]  CUDOS MOF Utilities, http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml.
[18]  T. P. White, B. T. Kuhlmey, R. C. McPhedran et al., “Multipole method for microstructured optical fibers. I. Formulation,” Journal of the Optical Society of America B, vol. 19, no. 10, pp. 2322–2330, 2002.
[19]  B. T. Kuhlmey, T. P. White, G. Renversez et al., “Multipole method for microstructured optical fibers. II. Implementation and results,” Journal of the Optical Society of America B, vol. 19, no. 10, pp. 2331–2340, 2002.
[20]  T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, no. 13, pp. 961–963, 1997.
[21]  J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nature Photonics, vol. 3, no. 2, pp. 85–90, 2009.
[22]  K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Optics Express, vol. 12, no. 10, pp. 2027–2032, 2004.
[23]  F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Optics Communications, vol. 284, no. 4, pp. 965–970, 2011.
[24]  J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics, vol. 78, no. 4, pp. 1135–1184, 2006.
[25]  S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Optics Communications, vol. 282, no. 17, pp. 3448–3455, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133