A water suspension of graphene oxide nanosheets (GONSs) obtained via exfoliation of a graphite oxide was treated with a solution of rhodamine 6G. It was found that adding the dye results in the destruction of the GONS water suspension and the precipitation of dyed graphene oxide. The precipitate, washed out of the excess dye and subjected to a second dispersal via sonification, provides a stable suspension of dyed GONS in water or dimethylformamide. The GONS dyeing produces shifts of major absorption bands of the dye in solutions or in polymer compositions toward larger wavelengths. We also found that the stability of a dye subjected to ultraviolet irradiation increases if the dye is bound to a GONS. The increased stability resulted from excitation transfer from dye to a GO nanosheet and its subsequent reduction. 1. Introduction Graphite oxide is known since the 19th century [1]. The current surge of interest to graphite oxide is due to not only its application as a prospective material for electrodes, membranes, and polymer additives [2–7] but also to a new avenue which opened after the discovery of the unique properties of graphene [8–10]. Contrary to many other carbon materials, graphite oxide is hydrophilic and is capable of forming colloidal solutions in water, spirits, and other polar solvents, where GO splits into thin sheets of up to one carbon layer thickness [11–13]. Graphite oxide “solubility” is due to a large number of oxygen-containing groups chemically bound to graphene layers. The presence of these groups deteriorates the mechanical and conducting properties of GO nanosheets with respect to those of graphene. A hydrazine processing restores [14–16] the GONS π-system and results in properties similar to those of graphene. Generally, the GO nanosheets possess [17] sites with different reaction abilities; therefore, it is difficult to predict beforehand the results of interactions between a GONS and different molecules. This letter describes the products of interactions between a GONS and the dye rhodamine 6G (R6G, C28H31ClN2O3) and then discusses some properties of this product. The goal of this work was to produce dyed GONSs in transparent polymer compositions. We prepared films of polymethylmethacrylate (PMMA) modified using both dye and dyed GONSs. The film samples were characterized using spectral methods. 2. Experimental Details Our GO samples were prepared according to Hummers and Offeman’s method [18] using a procedure whose details are described elsewhere [19]. Suspensions were prepared by mixing GO (100?mg) with water (100?mL) in
References
[1]
B. C. Brodie, “Sur le poids atomique du graphite,” Annales de Chimie et de Physique, vol. 59, pp. 466–472, 1860.
[2]
R. Yazami and P. Touzain, “Lithium—graphite oxide cells Part III: effect of origin and oxidation of graphite on batteries performances,” Synthetic Metals, vol. 12, no. 1-2, pp. 499–503, 1985.
[3]
M. Mermoux, R. Yazami, and P. Touzain, “Lithium-graphitic oxide cells part IV: influence of electrolyte and cathode composition,” Journal of Power Sources, vol. 20, no. 1-2, pp. 105–110, 1987.
[4]
T. Cassagneau and J. H. Fendler, “High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes,” Advanced Materials, vol. 10, no. 11, pp. 877–881, 1998.
[5]
T. Hwa, E. Kokufuta, and T. Tanaka, “Conformation of graphite oxide membranes in solution,” Physical Review A, vol. 44, no. 4, pp. R2235–R2238, 1991.
[6]
X. Wen, C. W. Garland, T. Hwa et al., “Crumpled and collapsed conformations in graphite oxide membranes,” Nature, vol. 355, no. 6359, pp. 426–428, 1992.
[7]
F. F. Abraham and M. Goulian, “Diffraction from polymerized membranes: flat vs. crumpled,” Europhysics Letters, vol. 19, pp. 293–296, 1992.
[8]
K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[9]
K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[10]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
[11]
M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, “Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles,” Carbon, vol. 42, no. 14, pp. 2929–2937, 2004.
[12]
M. Hirata, T. Gotou, and M. Ohba, “Thin-film particles of graphite oxide. 2: preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits,” Carbon, vol. 43, no. 3, pp. 503–510, 2005.
[13]
T. Szabó, A. Szeri, and I. Dékány, “Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer,” Carbon, vol. 43, no. 1, pp. 87–94, 2005.
[14]
S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[15]
J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, and J. M. Tour, “Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets,” Journal of the American Chemical Society, vol. 130, no. 48, pp. 16201–16206, 2008.
[16]
V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, vol. 4, no. 1, pp. 25–29, 2009.
[17]
R. Y. N. Gengler, K. Spyrou, and P. Rudolf, “A roadmap to high quality chemically prepared Graphene,” Journal of Physics D, vol. 43, no. 37, Article ID 374015, 19 pages, 2010.
[18]
W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, p. 1339, 1958.
[19]
V. E. Muradyan, M. G. Ezerskaya, V. I. Smirnova, et al., “Transformation of graphite oxide at conditions of ionic hydration,” Russian Journal of Organic Chemistry, vol. 12, pp. 2626–2629, 1991.
[20]
Y. Si and E. T. Samulski, “Synthesis of water soluble graphene,” Nano Letters, vol. 8, no. 6, pp. 1679–1682, 2008.
[21]
H. K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, and Y. H. Lee, “Thermal stability of graphite oxide,” Chemical Physics Letters, vol. 470, no. 4–6, pp. 255–258, 2009.
[22]
L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 11027–11032, 2009.
[23]
Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, S. A. Baskakov, V. A. Smirnov, and G. L. Gutsev, “Gaseous products of thermo- and photo-reduction of graphite oxide,” Chemical Physics Letters, vol. 498, no. 4–6, pp. 287–291, 2010.
[24]
H. C. Schniepp, J. L. Li, M. J. McAllister et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8535–8539, 2006.
[25]
X. Sun, Z. Liu, K. Welsher, et al., “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Research, vol. 1, pp. 203–212, 2008.
[26]
M. J. Hudson, F. R. Hunter-Fujita, J. W. Peckett, and P. M. Smith, “Electrochemically prepared colloidal, oxidised graphite,” Journal of Materials Chemistry, vol. 7, no. 2, pp. 301–305, 1997.
[27]
S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” Journal of Materials Chemistry, vol. 16, no. 2, pp. 155–158, 2006.
[28]
B. W. Reed and M. Sarikaya, “Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy,” Physical Review B, vol. 64, no. 19, Article ID 195404, 13 pages, 2001.
[29]
S. Attal, R. Thiruvengadathan, and O. Regev, “Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy,” Analytical Chemistry, vol. 78, no. 23, pp. 8098–8104, 2006.
[30]
D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, vol. 3, no. 2, pp. 101–105, 2008.
[31]
V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul'ga et al., “Photoreduction of graphite oxide,” High Energy Chemistry, vol. 45, no. 1, pp. 57–61, 2011.