全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2012 

Propagation of Electric Dipole Radiation through a Medium

DOI: 10.5402/2012/856748

Full-Text   Cite this paper   Add to My Lib

Abstract:

When electromagnetic energy propagates through a material medium, the paths of energy flow may be altered, as compared to propagation in free space. We consider radiation emitted by an electric dipole, embedded in a medium with permittivity and permeability . For a linear dipole in free space, the field lines of energy flow are straight, but when the imaginary part of is finite, the field lines in the material become curves in the near field of the dipole. Therefore, the energy flow is redistributed due to the damping in the material. For a circular dipole in free space, the field lines of energy flow wind around the axis perpendicular to the plane of rotation of the dipole moment. When has an imaginary part, this flow pattern is altered drastically. Furthermore, when the real part of is negative, the direction of rotation of the flow lines reverses. In that case, the energy in the field rotates opposite to the direction of rotation of the dipole moment. It is indicated that in metamaterials with a negative index of refraction this may lead to an observable effect in the far field. 1. Introduction When optical radiation from a localized source is observed at a large distance, it appears as if the light travels along straight lines. Similarly, light scattered or reflected by an object seems to travel from the object to an observer along straight lines, known as optical rays. These lines are the flow lines of the energy in the radiation field. In close vicinity of the source, however, these flow lines are in general curves, and intricate field line patterns may appear. Such structures can be found when the flow of radiation is resolved on a scale smaller than a wavelength. Particularly interesting is the possible presence of singularities and optical vortices. The first prediction of the existence of an optical vortex was made by Braunbek and Laukien in 1952 [1]. They considered the diffraction of a plane wave around the edge of a conducting half plane, and they found that a vortex should appear at the illuminated side of the plane, and close to the edge. Another mechanism that may lead to singularities and vortices in the energy flow is interference. We have shown recently [2, 3] that when a point source is located near a reflecting surface, numerous vortices are present in the energy-flow pattern when the source is about a wavelength away from the surface. A different type of vortex in the energy-flow pattern results from a rotation inside the source. We shall show in the next section that radiation emitted by an electric dipole may have such a vortex

References

[1]  W. Braunbek and G. Laukien, “Einzelheiten zur Halbebenen-Beugung,” Optik, vol. 9, pp. 174–179, 1952.
[2]  X. Li, J. Shu, and H. F. Arnoldus, “Optical vortices and singularities due to interference in atomic radiation near a mirror,” Optics Letters, vol. 34, no. 22, pp. 3595–3597, 2009.
[3]  X. Li and H. F. Arnoldus, “Electric dipole radiation near a mirror,” Physical Review A, vol. 81, no. 5, Article ID 053844, 10 pages, 2010.
[4]  H. F. Arnoldus and J. T. Foley, “The dipole vortex,” Optics Communications, vol. 231, no. 1–6, pp. 115–128, 2004.
[5]  H. F. Arnoldus, “Vortices in multipole radiation,” Optics Communications, vol. 252, no. 4–6, pp. 253–261, 2005.
[6]  J. D. Jackson, Classical Electrodynamics, Wiley, New York, NY, USA, 3rd edition, 1999.
[7]  J. Shu, X. Li, and H. F. Arnoldus, “Energy flow lines for the radiation emitted by a dipole,” Journal of Modern Optics, vol. 55, no. 15, pp. 2457–2471, 2008.
[8]  H. F. Arnoldus, X. Li, and J. Shu, “Subwavelength displacement of the far-field image of a radiating dipole,” Optics Letters, vol. 33, no. 13, pp. 1446–1448, 2008.
[9]  X. Li, J. Shu, and H. F. Arnoldus, “Far-field detection of the dipole vortex,” Optics Letters, vol. 33, no. 19, pp. 2269–2271, 2008.
[10]  J. Shu, X. Li, and H. F. Arnoldus, “Nanoscale shift of the intensity distribution of dipole radiation,” Journal of the Optical Society of America A, vol. 26, no. 2, pp. 395–402, 2009.
[11]  X. Li and H. F. Arnoldus, “Macroscopic far-field observation of the sub-wavelength near-field dipole vortex,” Physics Letters, Section A, vol. 374, no. 8, pp. 1063–1067, 2010.
[12]  D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Physical Review Letters, vol. 102, no. 12, Article ID 123903, 4 pages, 2009.
[13]  X. Li, D. M. Pierce, and H. F. Arnoldus, “Redistribution of energy flow in a material due to damping,” Optics Letters, vol. 36, no. 3, pp. 349–351, 2011.
[14]  X. Li, D. M. Pierce, and H. F. Arnoldus, “Damping of the dipole vortex,” Journal of the Optical Society of America A, vol. 28, no. 5, pp. 778–785, 2011.
[15]  V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
[16]  X. Li and H. F. Arnoldus, “Reversal of the dipole vortex in a negative index of refraction material,” Physics Letters, Section A, vol. 374, no. 43, pp. 4479–4482, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133