Advanced precise and accurate nanomeasurement techniques play an important role to improve the function and quality of surface characterization. There are two basic approaches, the hard measuring techniques and the soft computing measuring techniques. The advanced soft measuring techniques include coordinate measuring machines, roundness testing facilities, surface roughness, interferometric methods, confocal optical microscopy, scanning probe microscopy, and computed tomography at the level of nanometer scale. On the other hand, a new technical committee in ISO is established to address characterization issues posed by the areal surface texture and measurement methods. This paper reviews the major advanced soft metrology techniques obtained by optical, tactile, and other means using instruments, classification schemes of them, and their applications in the engineering surfaces. Furthermore, future trends under development in this area are presented and discussed to display proposed solutions for the important issues that need to be addressed scientifically. 1. Introduction Surface metrology became very important in many branches of science and industry. Study of dimensional and surface nanometrology is becoming more commonplace in many applications and research environments as well as data treatments dealing with standardized rules. Therefore, surface characterization using advanced accurate and precise nanomeasuring techniques are important tools especially in the production engineering, tribology, biotechnology, and criminology. Because of this diversification, there are more advanced metrology techniques using stylus, optical, and nonoptical methods used for analyzing the surface characteristics, where each technique has its own specific applications [1]. The ISO technical committee TC-213 in the field of dimensional and geometrical product specifications and verification formed a working group WG-16 to address standardization of areal (3D) surface texture and measurement methods, and to review existing standards on traditional profiling (2D) methods including characteristics of instruments. In 2007, the project of this working group was to develop standards for three basic methods of areal surface texture measurements [2–4]. A line-profiling method used a high-resolution probe to sense the peaks and valleys of the surface topography and produce a quantitative profile of surface. Areal topography methods extend the line-profiling method into 3D, usually by restoring a series of parallel pattern profiles or by some quantitative topographic imaging
References
[1]
S. H. R. Ali, “Advanced measuring techniques in dimensional and surface metrology,” in Proceedings of the 9th International Scientific Conference of Coordinate Measuring Technique (IMEKO-CT14), Bielsko-Bia?a, Poland, April 2012.
[2]
T. V. Vorburger, H.-G. Rhee, T. B. Renegar, J.-F. Song, and A. Zheng, “Comparison of optical and stylus methods for measurement of surface texture,” International Journal of Advanced Manufacturing Technology, vol. 33, no. 1-2, pp. 110–118, 2007.
[3]
ISO Committee Draft 25178-6, Geometrical product specification (GPS)-Surface texture: areal—Part 6: Classification of methods for measuring surface texture, 2007.
[4]
T. Vorburger, “ISO Standards for surface texture: update,” NIST, 2008, http://cstools.asme.org/csconnect/pdf/CommitteeFiles/29042.pdf.
[5]
J. A. Bosch, Coordinate Measuring Machines and Systems, Marcel Dekker, New York, NY, USA, 1995.
[6]
J. A. Bosch, Coordinate Measuring Machines and Systems, Marcel Dekker, 1st edition, 1995.
[7]
J. Gou, Theory and algorithms for coordinate metrology [Ph.D. thesis], Hong Kong University of Science and Technology, 1999.
J. Ni and F. Waldele, “Coordinate measuring machine,” in Coordinate Measuring Machine, J. A. Bosch, Ed., chapter 2, Marcel Dekker, New York, NY, USA, 1995.
[11]
S. H. R. Ali, “The influence of fitting algorithm and scanning speed on roundness error for 50?mm standard ring measurement using CMM,” Journal of Metrology & Measurement Systems, vol. 15, no. 1, pp. 31–53, 2008.
[12]
International Standards: Geometrical Product Specifications (GPS)-Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM)-Part 2: CMMs used for Measuring Size, ISO, 10360-2, 2001.
[13]
S. D. Phillips, B. Borchardt, W. T. Estler, and J. Buttress, “The estimation of measurement uncertainty of small circular features measured by coordinate measuring machines,” Precision Engineering, vol. 22, no. 2, pp. 87–97, 1998.
[14]
S. H. R. Ali, “Two dimensional model of CMM probing system,” Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 4, no. 2, pp. 3–7, 2010, http://www.jamris.org/issue_02_2010.php.
[15]
S. H. R. Ali, “Probing system characteristics in coordinate metrology,” Measurement Science Review, vol. 10, no. 4, pp. 120–129, 2010.
[16]
G. Hermann, “Geometric error correction in coordinate measurement,” Acta Polytechnica Hungarica, vol. 4, no. 1, pp. 47–62, 2007.
[17]
J. J. Park, K. Kwon, and N. Cho, “Development of a coordinate measuring machine (CMM) touch probe using a multi-axis force sensor,” Measurement Science and Technology, vol. 17, no. 9, pp. 2380–2386, 2006.
[18]
A. Wo?niak and M. Dobosz, “Influence of measured objects parameters on CMM touch trigger probe accuracy of probing,” Precision Engineering, vol. 29, no. 3, pp. 290–297, 2005.
[19]
A. Kasparaitis and A. ?ukys, “Dynamic errors of CMM probes,” Solid State Phenomena, vol. 113, pp. 477–482, 2006.
[20]
Y. Wu, S. Liu, and G. Zhang, “Improvement of coordinate measuring machine probing accessibility,” Precision Engineering, vol. 28, no. 1, pp. 89–94, 2004.
[21]
J.-A. Yagüe, J.-A. Albajez, J. Ve?azquez, and J.-J. Aguilar, “A new out-of-machine calibration technique for passive contact analog probes,” Measurement, vol. 42, no. 3, pp. 346–357, 2009.
[22]
A. Wo?niak, J. R. R. Mayer, and M. Ba?aziński, “Stylus tip envelop method: corrected measured point determination in high definition coordinate metrology,” International Journal of Advanced Manufacturing Technology, vol. 42, no. 5-6, pp. 505–514, 2009.
[23]
M. Antonetti, M. Barloscio, A. Rossi, and M. Lanzetta, “Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method,” Measurement, vol. 44, no. 7, pp. 1243–1252, 2011.
[24]
Zeiss Calypso Navigator, CMM operation instructions and training manual, Revision 4.0, Germany, 2004.
[25]
A. Garces, D. Huser-Teuchert, T. Pfeifer, P. Scharsich, F. Torres-Leza, and E. Trapet, “Performance test procedures for optical coordinate measuring probes,” report on contract 3319/1/0/159/89/8-BCR-D(30), European Communities, Brussels, Belgium, 1993.
Z. G. Fei, J. J. Guo, X. J. Ma, and D. Z. Gao, “A novel type compact five-coordinate measuring machine with laser and CCD compound probe,” Measurement, vol. 44, no. 9, pp. 1598–1605, 2011.
[28]
J. S?adek, P. M. B?aszczyk, M. Kupiec, and R. Sitnik, “The hybrid contact-optical coordinate measuring system,” Measurement, vol. 44, no. 3, pp. 503–510, 2011.
[29]
L. Xiuming and S. Zhaoyao, “Application of convex hull in the assessment of roundness error,” International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 711–714, 2008.
[30]
T.-H. Sun, “Applying particle swarm optimization algorithm to roundness measurement,” Expert Systems with Applications, vol. 36, no. 2, part 2, pp. 3428–3438, 2009.
[31]
D. Bogomolov, V. Poroshin, A. Kostyuk, and V. Radygin, “High precision PC based measurement systems for complex analysis of roundness and waviness,” Advanced Engineering, vol. 4, no. 1, pp. 5–8, 2010.
W. Gao and S. Kiyono, “On-machine roundness measurement of cylindrical work pieces by the combined three-point method,” Measurement, vol. 21, no. 4, pp. 147–156, 1997.
[36]
S. Mekid and K. Vacharanukul, “In-process out-of-roundness measurement probe for turned workpieces,” Measurement, vol. 44, no. 4, pp. 762–766, 2011.
[37]
R. Verma and J. Raja, “Characterization of engineered surfaces,” Journal of Physics, vol. 13, no. 1, pp. 5–8, 2005.
[38]
E. J. Abbott and F. A. Firestone, “Specifying surface quality,” Mechanical Engineering, vol. 55, pp. 569–572, 1933.
[39]
T. G. Mathia, P. Pawlus, and M. Wieczorowski, “Recent trends in surface metrology,” Wear, vol. 271, no. 3-4, pp. 494–508, 2011.
E. Peiner, “Compliant tactile sensors for high-aspect-ratio form metrology,” in Sensors, Focus on Tactile, Force and Stress Sensors, J. Gerardo Rocha and S. Lanceros-Mendez, Eds., Chapter 21, p. 444, I-Tech, Vienna, Austria, 2008.
[42]
E. Peiner, M. Balke, and L. Doering, “Form measurement inside fuel injector nozzle spray holes,” Microelectronic Engineering, vol. 86, no. 4–6, pp. 984–986, 2009.
[43]
M. Wieczorowski, “Spiral sampling as a fast way of data acquisition in surface topography,” International Journal of Machine Tools and Manufacture, vol. 41, no. 13-14, pp. 2017–2022, 2001.
[44]
J. Song, “the effect of gaussian filter long wavelength cutoff λc in topography measurements and comparisons,” in Proceedings of the 21st Annual Meeting of the American Society for Precision Engineering, pp. 387–390, Monterey, Calif, USA, October 2006.
[45]
J. M. Bennett, “Overview: sensitive techniques for surface measurement and characterization,” in Commercial Applications of Precision Manufacturing at the Sub-Micron Level, vol. 1573 of Proceedings of SPIE, pp. 152–158, April 1992.
[46]
J. M. Bennett, “Recent developments in surface roughness characterization,” Measurement Science and Technology, vol. 3, no. 12, pp. 1119–1127, 1992.
[47]
H. J. Tiziani, “Optical methods for precision measurements—an invited paper,” Optical and Quantum Electronics, vol. 21, no. 4, pp. 253–282, 1989.
[48]
K. Leonhardt, K.-H. Rippert, and H. J. Tiziani, “Optical methods of measuring rough surfaces,” in Surface Measurement and Characterization, vol. 1009 of Proceedings of SPIE, pp. 22–29, September 1988.
[49]
C. J. Tay, S. H. Wang, C. Quan, and H. M. Shang, “In situ surface roughness measurement using a laser scattering method,” Optics Communications, vol. 218, no. 1–3, pp. 1–10, 2003.
[50]
S. Wang, Y. H. Tian, C. J. Tay, and C. Quan, “Development of a laser-scattering-based probe for on-line measurement of surface roughness,” Applied Optics, vol. 42, no. 7, pp. 1318–1324, 2003.
A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Applied Optics, vol. 39, no. 13, pp. 2107–2115, 2000.
[53]
B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Applied Optics, vol. 24, no. 10, pp. 1489–1497, 1985.
[54]
J. E. Greivenkamp and J. H. Bruning, “Phase-shifting interferometry,” in Optical Shop Testing, D. Malacara, Ed., pp. 501–598, John Wiley & Sons, New York, NY, USA, 1992.
[55]
Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation. I,” Optics and Spectroscopy, vol. 15, p. 279, 1963.
[56]
Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation. II,” Optics and Spectroscopy, vol. 18, p. 152, 1965.
[57]
B. J. Chang, R. C. Alferness, and E. N. Leith, “Space-invariant achromatic grating interferometers: theory,” Applied Optics, vol. 14, no. 7, pp. 1592–1600, 1975.
[58]
E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Applied Optics, vol. 19, no. 4, pp. 638–644, 1980.
[59]
Y.-S. Cheng and E. N. Leith, “Successive fourier transformation with an achromatic interferometer,” Applied Optics, vol. 23, no. 22, pp. 4029–4033, 1984.
[60]
E. N. Leith and R. R. Hershey, “Transfer functions and spatial filtering in grating interferometers,” Applied Optics, vol. 24, no. 2, pp. 237–239, 1985.
[61]
J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometer for surface characterization of magnetic media,” ASLE Transactions, vol. 27, no. 2, pp. 101–113, 1984.
[62]
P. F. Forman, “The ZYGO interferometer system,” in Interferometry, vol. 129 of Proceedings of SPIE, pp. 41–48, August 1979.
[63]
L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Applied Optics, vol. 33, no. 31, pp. 7334–7338, 1994.
[64]
J. Schmit and A. Olszak, “High-precision shape measurement by white-light interferometry with real-time scanner error correction,” Applied Optics, vol. 41, no. 28, pp. 5943–5950, 2002.
[65]
T. V. Vorburger, H.-G. Rhee, T. B. Renegar, J.-F. Song, and A. Zheng, “Comparison of optical and stylus methods for measurement of surface texture,” International Journal of Advanced Manufacturing Technology, vol. 33, no. 1-2, pp. 110–118, 2007.
[66]
J. C. Wyant, “White light extended source shearing interferometer,” Applied Optics, vol. 13, no. 1, pp. 200–202, 1974.
[67]
Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Applied Optics, vol. 23, no. 24, pp. 4539–4543, 1984.
[68]
Y. Y. Cheng and J. C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Applied Optics, vol. 24, no. 6, pp. 804–807, 1985.
[69]
Optical Topography Measurement and Material Characterisation of Alu Cylinder Faces, http://www.breitmeier.com/component/content/article/119-wissen#fig6.
[70]
M. Conroy and J. Armstrong, “A comparison of surface metrology techniques,” Journal of Physics, vol. 13, no. 13, pp. 458–465, 2005.
[71]
S. Ma, C. Quan, R. Zhu, C. J. Tay, and L. Chen, “Surface profile measurement in white-light scanning interferometry using a three-chip color CCD,” Applied Optics, vol. 50, no. 15, pp. 2246–2254, 2011.
[72]
S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Optics Communications, vol. 284, no. 10-11, pp. 2488–2493, 2011.
M. Minsky, Microscopy Apparatus, U.S. Patent No. 3013467, 19, December 1961.
[75]
M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning, vol. 10, no. 4, pp. 128–138, 1988.
[76]
U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement Science and Technology, vol. 13, no. 9, pp. R85–R101, 2002.
[77]
Y. Awatsuji, T. Koyama, T. Tahara et al., “Parallel optical-path-length-shifting digital holography,” Applied Optics, vol. 48, no. 34, pp. H160–H167, 2009.
[78]
N. F. A-Maaboud, M. S. El-Bahrawi, and F. Abdel-Aziz, “Digital holography in flatness and crack investigation,” Metrology and Measurement Systems, vol. 17, no. 4, pp. 583–588, 2010.
[79]
X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and K. K. Kim, “Quantitative imaging and measurement of cell–substrate surface deformation by digital holography,” Journal of Modern Optics, vol. 59, no. 18, pp. 1591–1598, 2012.
[80]
A. Vilalta-Clemente and K. Gloystein, Principles of atomic force microscopy (AFM), based on the lecture of Prof. Nikos, Frangis Aristotle University, Thessaloniki, Greece, Physics of Advanced Materials Winter School, 2008, http://www.mansic.eu/documents/PAM1/Frangis.pdf.
[81]
Ernst Ruska, Ernst Ruska Autobiography, Nobel foundation, 1986, http://nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-autobio.html.
[82]
G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters, vol. 56, no. 9, pp. 930–933, 1986.
[83]
The principles of Atomic Force Microscopy (AFM), https://www.uclan.ac.uk/schools/computing_engineering_physical/jost/files/AFM.pdf.
[84]
Difference between AFM and STM, 2011, http://www.differencebetween.net/technology/difference-between-afm-and-stm/.
[85]
G. Binning, H. Rohrer, E. Weibel, et al., “Surface studies by scanning tunneling microscopy,” Physical Review Letters, vol. 49, no. 1, pp. 57–61, 1982.
[86]
H.-Y. Nie, “Scanning probe techniques,” http://publish.uwo.ca/~hnie/spmman.html#c-afm.
[87]
M. Simon, I. Tiseanu, and C. Sauerwein, “Advanced computed tomography system for the inspection of large aluminium car bodies,” ECNDT, 2006.
[88]
V. Andreu, B. Georgi, H. Lettenbauer, and J. A. Yague, “Analysis of the error sources of a Computer Tomography Machine,” pp. 1–10, 2009, http://www.iberprecis.es/docs/Paper_CT.pdf.
[89]
S. Kasperl, J. Hiller, and M. Krumm, “Computed tomography metrology in industrial research & development,” in Proceedings of the International Symposium on NDT in Aerospace, pp. 1–8, Fürth, Germany, December 2008.
[90]
M. Bartscher, U. Neuschaefer-Rube, and F. W?ldele, “Computed tomography—a highly potential tool for industrial quality control and production near measurements,” VDI Berichte, vol. 1860, pp. 477–796, 2004.
[91]
M. Bartscher, U. Hilpert, J. Goebbels, and G. Weidemann, “Enhancement and proof of accuracy of industrial computed tomography (CT) measurements,” CIRP Annals, vol. 56, no. 1, pp. 495–498, 2007.
[92]
M. Stedman, “Limits of surface measurement by optical probes,” in Surface Measurement and Characterisation, vol. 1009 of Proceedings of SPIE, pp. 62–67, Hamburg, Germany, September 1988.
[93]
M. Stedman and K. Lindsey, “Limits of surface measurement by stylus instruments,” in Surface Measurement and Characterization, vol. 1009 of Proceedings of SPIE, pp. 56–61, Hamburg, Germany, September 1988.
[94]
H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Annals, vol. 51, no. 2, pp. 685–699, 2002.
[95]
S. H. R. Ali, M. Kamal Bedewy, and S. Z. Zahwi, “Dimensional inspection of overhauled automotive water-cooled diesel engines,” in Proceedings of the 9th International Conference on Production Engineering, Design, and Control (PEDAC '09), pp. 10–12, Alexandria, Egypt, February 2009.
[96]
S. H. R. Ali, H. H. Mohamed, and M. K. Bedewy, “Identifying cylinder liner wear using precise coordinate measurements,” International Journal of Precision Engineering and Manufacturing, vol. 10, no. 5, pp. 19–25, 2009.
[97]
A. V. Sreenath and N. Raman, “Running-in wear of a compression ignition engine: factors influencing the conformance between cylinder liner and piston rings,” Wear, vol. 38, no. 2, pp. 271–289, 1976.
[98]
A. Spencer, A. Almqvist, and R. Larsson, “A semi-deterministic texture-roughness model of the piston ring-cylinder liner contact,” Proceedings of the Institution of Mechanical Engineers J, vol. 225, no. 6, pp. 551–555, 2011.
[99]
L. Rapoport, A. Moskovith, V. Perfilyev et al., “Friction and wear of MoS2 films on laser textured steel surfaces,” in Proceedings of 13th Nordic Symposium on Tribology (NORDTRIB '08), Tampere, Finland, June 2008.
[100]
W. Koszela, L. Galda, A. Dzierwa, and P. Pawlus, “The effect of surface texturing on seizure resistance of steel-bronze assembly,” in Proceedings of the 36th Leeds-Lyon Symposium on Tribology, Lyon, France, 2009.
[101]
L. Galda, A. Dzierwa, J. Sep, and P. Pawlus, “The effect of oil pockets shape and distribution on seizure resistance in lubricated sliding,” Tribology Letters, vol. 37, no. 2, pp. 301–311, 2010.
[102]
E. Gualtieri, A. Borghi, L. Calabri, N. Pugno, and S. Valeri, “Increasing nanohardness and reducing friction of nitride steel by laser surface texturing,” Tribology International, vol. 42, no. 5, pp. 699–705, 2009.
[103]
L. Galda, P. Pawlus, and J. Sep, “Dimples shape and distribution effect on characteristics of Stribeck curve,” Tribology International, vol. 42, no. 10, pp. 1505–1512, 2009.
[104]
L. M. Vilhena, M. Sedla?ek, B. Podgornik, J. Vi?intin, A. Babnik, and J. Mo?ina, “Surface texturing by pulsed Nd: YAG laser,” Tribology International, vol. 42, no. 10, pp. 1496–1504, 2009.
[105]
W. Koszela, P. Pawlus, and L. Galda, “The effect of oil pockets size and distribution on wear in lubricated sliding,” Wear, vol. 263, no. 7–12, pp. 1585–1592, 2007.
[106]
M. Mosleh and B. A. Khemet, “A surface texturing approach for cleaner disc brakes,” Tribology and Lubrication Technology, vol. 62, no. 12, pp. 32–37, 2006.
[107]
F.-P. Ninove, C. Rapiejko, and T. G. Mathia, “3D Morphological behaviour of heterogeneous model material in finishing abrasive process-case of nodular cast iron,” in Advances in Coordinate Metrology, J. Sladek and W. Jakubiec, Eds., pp. 456–462, University of Bielsko-Biala, 2010.
[108]
A. Spencer, I. Dobryden, N. Almqvist, A. Almqvist, and R. Larsson, “Surface characterization with functional parameters,” submitted to. Tribology Transactions.
[109]
S. H. R. Ali, M. A. Etman, B. S. Azzam, R. M. Rashad, and M. K. Bedewy, “Advanced nanometrology techniques of carbon nanotubes characterization,” Metrology and Measurement Systems, vol. 15, no. 4, pp. 551–561, 2008.
[110]
S. H. R. Ali, M. K. Bedewy, M. A. Etman, H. A. Khalil, and B. S. Azzam, “Morphology and properties of polymer matrix nanocomposites,” International Journal of Metrology and Quality Systems, vol. 1, no. 1, pp. 33–39, 2010.
[111]
Keyence, Keyence World Class Products for Sensing and Automation, 2008.
[112]
C. Altin and I. Ozil, Applications of surface metrology to issues in art, Project report, Worcester polytechnic institute, 2008, http://www.wpi.edu/Pubs/E-project/Available/E-project-042408-121857/unrestricted/IQP_ceren_ipek.pdf.
[113]
J. Stor-Pellinen and M. Luukkala, “Paper roughness measurement using airborne ultrasound,” Sensors and Actuators A, vol. 49, no. 1-2, pp. 37–40, 1995.
[114]
J. S. Preston, N. J. Elton, J. C. Husband, J. Dalton, P. J. Heard, and G. C. Allen, “Investigation into the distribution of ink components on printed coated paper: part 1: optical and roughness considerations,” Colloids and Surfaces A, vol. 205, no. 3, pp. 183–198, 2002.
[115]
N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-dimensional surface topography acquisition and analysis for firearm identification,” Journal of Forensic Sciences, vol. 51, no. 2, pp. 282–295, 2006.
[116]
E. P. Whitenton, C. Johnson, D. Kelley, et al., “Manufacturing and quality control of the NIST reference material 8240 standard bullet,” in Proceedings of the 18th Annual Meeting of the American Society for Precision Engineering, pp. 99–102, Portland, Ore, USA, 2003.
[117]
J. F. Song, E. Whitenton, D. Kelley et al., “SRM 2460/2461 standard bullets and casings project,” Journal of Research of the National Institute of Standards and Technology, vol. 109, no. 6, pp. 533–542, 2004.
[118]
K. J. Stout and L. A. Blunt, “Application of 3-D topography to bio-engineering,” International Journal of Machine Tools and Manufacture, vol. 35, no. 2, pp. 219–229, 1995.
[119]
K. A. Krackow, D. S. Hungerford, C. J. Lavernia, M. K. Drakeford, A. K. Tsao, and A. Gittelsohn, “Revision and primary hip and knee arthroplasty: a cost analysis,” Clinical Orthopaedics and Related Research, no. 311, pp. 136–141, 1995.
[120]
R. Gunaseelan, V. Prabhu, B. Praveen, et al., “Evaluation of bone quality in dental socket with two different approaches for ridge preservation using grey scale imaging and Novel Micro CT,” Dental Asia, pp. 22–27, November/December 2010.
[121]
E. Marsh, J. Couey, and R. Vallance, “Nanometer-level comparison of three spindle error motion separation techniques,” Journal of Manufacturing Science and Engineering, vol. 128, no. 1, pp. 180–187, 2006.
[122]
A. Nafi, J. R. R. Mayer, and A. Wozniak, “Novel CMM-based implementation of the multi-step method for the separation of machine and probe errors,” Precision Engineering, vol. 35, no. 2, pp. 318–328, 2011.
[123]
C. L. Giusca, R. K. Leach, and A. B. Forbes, “A virtual machine-based uncertainty evaluation for a traceable areal surface texture measuring instrument,” Measurement, vol. 44, no. 5, pp. 988–993, 2011.
[124]
J. Bernstein and A. Weckenmann, “User interface for optical multi-sensorial measurements at extruded profiles,” Measurement, vol. 44, no. 1, pp. 202–210, 2011.
[125]
H. González-Jorge, M. A. Fernández-López, J. L. Valencia, and S. Torres, “Uncertainty contribution of tip-sample angle to AFM lateral measurements,” Precision Engineering, vol. 35, no. 1, pp. 164–172, 2011.
[126]
R. Donker, I. Widdershoven, and H. Spaan, “Realization of Isara 400: a large measurement volume ultra-precision CMM,” in Proceedings of the Asian Symposium for Precision Engineering and Nanotechnology, 2009.
[127]
R. Ohisson, A topographic study of functional surfaces [Ph.D. thesis], Chalmers University of Technology, 1996.
Confocal white light sensor, Hommel-Etamic Jenoptik, Schwenningen, 2007.
[130]
Craig Leising, Accurate Micropart Topography Using 3-D Metrology, 12/02/2010, http://www.qualitydigest.com/inside/twitter-ed/accurate-micropart-topography-using-3-d-metrology.html.
L. Brown and L. Blunt, “Surface metrology for the automotive industry,” in Proceedings of the Inaugural Automotive Researchers' Conference, University of Huddersfield, January 2008, http://eprints.hud.ac.uk/4059/1/08AARC2008.pdf.
[133]
Christopher, “Basic Elements of the Design and Selection of Surface Metrology Systems, 2006”.
[134]
C. A. Brown, The geometric nature of surface roughness and microwave transmission losses [Ph.D. thesis], http://www.imapsne.net/archive/docs/Roughness-%20Brown.pdf.
[135]
M. Zecchino, “Characterizing surface quality: why average roughness is not enough,” Advanced Materials and Processes, vol. 161, no. 3, pp. 25–28, 2003.
[136]
J. Forsgren, U. Brohede, S. Piskounova et al., “In vivo evaluation of functionalized biomimetic hydroxyapatite for local delivery of active agents,” Journal of Biomaterials and Nanobiotechnology, vol. 2, pp. 150–155, 2011.