全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2012 

Feedback Control in Quantum Optics: An Overview of Experimental Breakthroughs and Areas of Application

DOI: 10.5402/2012/275016

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a broad summary of research involving the application of quantum feedback control techniques to optical setups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum nondemolition memories, feedback cooling, quantum state control, adaptive quantum measurements, and coherent feedback strategies will all be touched upon in our discussion. 1. Introduction Quantum control is a broad field of study, engaging the engineering, mathematics, and physical sciences communities in an effort to analyse, design, and experimentally demonstrate techniques whereby the dynamics of physical systems operating at the quantum regime is steered towards desired aims by external, time-dependent manipulation [1, 2]. The development of advanced quantum control schemes is clearly central to the areas of quantum and nanotechnologies, whenever the main focus is on the exploitation of coherent quantum effects. Prominent among classical and quantum control techniques are the so-called feedback or closed-loop techniques [2, 3], where the manipulation applied on the system at a given time depends on its state in the past. Closed-loop quantum control is particularly well suited to fight decoherence (the nemesis of quantum information processing, whereby the system quantum coherence is lost through unwanted interaction with a large macroscopic environment) and stabilise quantum resources in the face of noise. It is therefore a very promising paradigm, which is attracting considerable attention. Due to the high degree of coherent control, to the wide availability of well-established experimental techniques, and to the relatively low technical noise and decoherence enjoyed by optical setups, the quantum optics community has been in a position to pioneer most of the quantum control techniques developed so far and is still definitely at the forefront of such research. In particular, quantum optics allows for fast and relatively efficient detections in the quantum regime, for manipulations by control fields on time scales much shorter than the system’s typical dynamical time scales, as well as for efficient input-output interfaces (as for travelling modes impinging on optical cavities). These advantages make quantum optical systems particularly well suited for the implementation of closed-loop (“feedback”) control techniques, where some (classical or quantum) information is extracted from

References

[1]  D. D'Alessandro, Introduction to Quantum Control and Dynamics, Taylor & Francis, New York, NY, USA, 2008.
[2]  H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, Cambridge University Press, Cambridge, UK, 2010.
[3]  K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Englewood Clis, NJ, USA, 1996.
[4]  C. Sayrin, I. Dotsenko, X. Zhou, et al., “Real-time quantum feedback prepares and stabilises photon number states,” Nature, vol. 477, p. 73, 2011.
[5]  H. Yonezawa, D. Nakane, T. A. Wheatley et al., “Quantum-enhanced optical-phase tracking,” Science, vol. 337, no. 6101, pp. 1514–1517, 2012.
[6]  H. Rabitz, “Focus on quantum control,” New Journal of Physics, vol. 11, Article ID 105030, 2009.
[7]  C. W. Gardiner and P. Zoller, Quantum Noise, Springer, Berlin, Germany, 3rd edition, 2004.
[8]  H. J. Carmichael, Statistical Methods in Quantum Optics. 2, Springer, Berlin, Germany, 2008.
[9]  K. Jacobs and D. A. Steck, “A straightforward introduction to continuous quantum measurement,” Contemporary Physics, vol. 47, no. 5, pp. 279–303, 2006.
[10]  L. D. Tóth, “Paradigms for quantum feedback control,” http://arxiv.org/abs/1210.0360.
[11]  A. Peres, Quantum Theory: Concepts and Methods, vol. 57, Kluwer Academic, Dordrecht, The Netherlands, 1993.
[12]  M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Reviews of Modern Physics, vol. 70, no. 1, pp. 101–144, 1998.
[13]  H. P. Breuer, “Exact quantum jump approach to open systems in bosonic and spin baths,” Physical Review A, vol. 69, no. 2, Article ID 022115, 8 pages, 2004.
[14]  K. Banaszek, “Fidelity balance in quantum operations,” Physical Review Letters, vol. 86, no. 7, pp. 1366–1369, 2001.
[15]  Y. Aharonov and L. Vaidman, “Properties of a quantum system during the time interval between two measurements,” Physical Review A, vol. 41, no. 1, pp. 11–20, 1990.
[16]  V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science, vol. 209, no. 445, pp. 547–557, 1980.
[17]  N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Physical Review Letters, vol. 97, no. 11, Article ID 110501, 4 pages, 2006.
[18]  L. S. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Reviews of Modern Physics, vol. 77, no. 2, pp. 513–577, 2005.
[19]  J. L. O'Brien, A. Furusawa, and J. Vu?kovi?, “Photonic quantum technologies,” Nature Photonics, vol. 3, no. 12, pp. 687–695, 2009.
[20]  D. F. Walls, “Squeezed states of light,” Nature, vol. 306, no. 5939, pp. 141–146, 1983.
[21]  Y. Yamamoto, N. Imoto, and S. MacHida, “Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback,” Physical Review A, vol. 33, no. 5, pp. 3243–3261, 1986.
[22]  V. P. Belavkin, “Towards the theory of control in observable quantum systems,” http://arxiv.org/abs/quant-ph/0408003.
[23]  V. Belavkin, “Nondemolition measurement and control in quantum dynamical systems,” in Information Complexity and Control in Quantum Physics, vol. 294, pp. 311–329, Springer, New York, NY, USA, 1987.
[24]  V. P. Belavkin, “Eventum mechanics of quantum trajectories: continual measurements, quantum predictions and feedback control,” http://arxiv.org/abs/math-ph/0702079.
[25]  H. A. Haus and Y. Yamamoto, “Theory of feedback-generated squeezed states,” Physical Review A, vol. 34, no. 1, pp. 270–292, 1986.
[26]  J. H. ] Shapiro, G. Saplakoglu, S. -T. Ho, P. Kumar, B. E. A. Saleh, and M. C. Teich, “Theory of light detection in the presence of feedback,” Journal of the Optical Society of America B, vol. 4, p. 1604, 1987.
[27]  H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Physical Review Letters, vol. 70, no. 5, pp. 548–551, 1993.
[28]  H. M. Wiseman, “Quantum theory of continuous feedback,” Physical Review A, vol. 49, no. 3, pp. 2133–2150, 1994.
[29]  H. M. Wiseman, “Erratum: quantum theory of continuous feedback (Physical Review A (1994) 49, 3, (2133)),” Physical Review A, vol. 49, no. 6, 5159.
[30]  H. M. Wiseman, “Erratum: quantum theory of continuous feedback [Phys. Rev. a 49, 2133 (1994)],” Physical Review A, vol. 50, no. 5, 4428.
[31]  H. M. Wiseman and L. Diósi, “Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems,” Chemical Physics, vol. 268, no. 1–3, pp. 91–104, 2001.
[32]  H. M. Wiseman and A. C. Doherty, “Optimal unravellings for feedback control in linear quantum systems,” Physical Review Letters, vol. 94, no. 7, Article ID 070405, 4 pages, 2005.
[33]  A. C. Doherty and K. Jacobs, “Feedback control of quantum systems using continuous state estimation,” Physical Review A, vol. 60, no. 4, pp. 2700–2711, 1999.
[34]  A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan, “Quantum feedback control and classical control theory,” Physical Review A, vol. 62, no. 1, Article ID 012105, 13 pages, 2000.
[35]  D. A. Steck, K. Jacobs, H. Mabuchi, T. Bhattacharya, and S. Habib, “Quantum feedback control of atomic motion in an optical cavity,” Physical Review Letters, vol. 92, no. 22, Article ID 223004, 4 pages, 2004.
[36]  C. Ahn, A. C. Doherty, and A. J. Landahl, “Continuous quantum error correction via quantum feedback control,” Physical Review A, vol. 65, no. 4, Article ID 042301, 10 pages, 2002.
[37]  M. M. Wolf, J. Eisert, and M. B. Plenio, “Entangling power of passive optical elements,” Physical Review Letters, vol. 90, no. 4, Article ID 047904, 4 pages, 2003.
[38]  G. Adesso and F. Illuminati, “Entanglement in continuous-variable systems: recent advances and current perspectives,” Journal of Physics A, vol. 40, no. 28, pp. 7821–7880, 2007.
[39]  H. M. Wiseman and G. J. Milburn, “Squeezing via feedback,” Physical Review A, vol. 49, no. 2, pp. 1350–1366, 1994.
[40]  S. Mancini, “Markovian feedback to control continuous-variable entanglement,” Physical Review A, vol. 73, no. 1, Article ID 010304, 4 pages, 2006.
[41]  S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Physical Review A, vol. 75, no. 1, Article ID 012330, 10 pages, 2007.
[42]  A. Serafini and S. Mancini, “Determination of maximal gaussian entanglement achievable by feedback-controlled dynamics,” Physical Review Letters, vol. 104, no. 22, Article ID 220501, 4 pages, 2010.
[43]  M. G. Genoni, S. Mancini, and A. Serafini, “Driving linear systems to non-classical states with the help of noise,” http://arxiv.org/abs/1203.3831.
[44]  H. I. Nurdin and N. Yamamoto, “Distributed entanglement generation between continuous-mode Gaussian fields with measurement-feedback enhancement,” Physical Review A, vol. 86, no. 2, Article ID 022337, 12 pages, 2012.
[45]  A. Negretti, U. V. Poulsen, and K. M?lmer, “Quantum superposition state production by continuous observations and feedback,” Physical Review Letters, vol. 99, no. 22, Article ID 223601, 4 pages, 2007.
[46]  L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Physical Review Letters, vol. 57, no. 20, pp. 2520–2523, 1986.
[47]  Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Applied Physics B, vol. 55, no. 3, pp. 265–278, 1992.
[48]  Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Physical Review Letters, vol. 68, no. 25, pp. 3663–3666, 1992.
[49]  K. Hammerer, A. S. S?rensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Reviews of Modern Physics, vol. 82, no. 2, pp. 1041–1093, 2010.
[50]  Z. Kurucz and K. M?lmer, “Multilevel Holstein-Primakoff approximation and its application to atomic spin squeezing and ensemble quantum memories,” Physical Review A, vol. 81, no. 3, Article ID 032314, 11 pages, 2010.
[51]  B. Julsgaard, J. Sherson, J. I. Cirac, J. Flurá?ek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature, vol. 432, no. 7016, pp. 482–486, 2004.
[52]  J. F. Sherson, H. Krauter, R. K. Olsson et al., “Quantum teleportation between light and matter,” Nature, vol. 443, no. 7111, pp. 557–560, 2006.
[53]  K. Jensen, W. Wasilewski, H. Krauter et al., “Quantum memory for entangled continuous-variable states,” Nature Physics, vol. 7, no. 1, pp. 13–16, 2011.
[54]  C. Simon, M. Afzelius, J. Appel et al., “Quantum memories :A review based on the European integrated project Qubit Applications (QAP),” European Physical Journal D, vol. 58, no. 1, pp. 1–22, 2010.
[55]  K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature, vol. 452, no. 7183, pp. 67–71, 2008.
[56]  A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Photonics, vol. 3, no. 12, pp. 706–714, 2009.
[57]  H. Yadsan-Appleby and A. Serafini, “Would one rather store squeezing or entanglement in continuous variable quantum memories?” Physics Letters, Section A, vol. 375, no. 18, pp. 1864–1869, 2011.
[58]  L. K. Thomsen, S. Mancini, and H. M. Wiseman, “Spin squeezing via quantum feedback,” Physical Review A, vol. 65, no. 6, Article ID 061801, 4 pages, 2002.
[59]  T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Spin-squeezing and Dicke-state preparation by heterodyne measurement,” Physical Review A, vol. 83, no. 1, Article ID 013821, 8 pages, 2011.
[60]  S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, “Criteria for continuous-variable quantum teleportation,” Journal of Modern Optics, vol. 47, no. 2-3, pp. 267–278, 2000.
[61]  K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, “Quantum benchmark for storage and transmission of coherent states,” Physical Review Letters, vol. 94, no. 15, Article ID 150503, 4 pages, 2005.
[62]  M. Owari, M. B. Plenio, E. S. Polzik, A. Serafini, and M. M. Wolf, “Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states,” New Journal of Physics, vol. 10, Article ID 113014, 2008.
[63]  F. Ticozzi and L. Viola, “Single-bit feedback and quantum-dynamical decoupling,” Physical Review A, vol. 74, no. 5, Article ID 052328, 11 pages, 2006.
[64]  J. R. Wootton, “Quantum memories and error correction,” http://arxiv.org/abs/1210.3207.
[65]  A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Physical Review Letters, vol. 105, no. 10, Article ID 101101, 4 pages, 2010.
[66]  K. Stannigel, P. Rabl, A. S. S?rensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Physical Review Letters, vol. 105, no. 22, Article ID 220501, 4 pages, 2010.
[67]  G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Physical Review D, vol. 34, no. 2, pp. 470–491, 1986.
[68]  R. Penrose, “On gravity's role in quantum state reduction,” General Relativity and Gravitation, vol. 28, no. 5, pp. 581–600, 1996.
[69]  W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Physical Review Letters, vol. 91, no. 13, Article ID 130401, 4 pages, 2003.
[70]  D. Kleckner, I. Pikovski, E. Jeffrey et al., “Creating and verifying a quantum superposition in a micro-optomechanical system,” New Journal of Physics, vol. 10, Article ID 095020, 2008.
[71]  T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172–1176, 2008.
[72]  F. Marquardt and S. M. Girvin, “Optomechanics,” Physics, vol. 2, p. 40, 2009.
[73]  S. Gigan, H. R. B?hm, M. Paternostro et al., “Self-cooling of a micromirror by radiation pressure,” Nature, vol. 444, no. 7115, pp. 67–70, 2006.
[74]  O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature, vol. 444, no. 7115, pp. 71–74, 2006.
[75]  D. E. Chang, C. A. Regal, S. B. Papp et al., “Cavity opto-mechanics using an optically levitated nanosphere,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1005–1010, 2010.
[76]  P. F. Barker and M. N. Shneider, “Cavity cooling of an optically trapped nanoparticle,” Physical Review A, vol. 81, no. 2, Article ID 023826, 6 pages, 2010.
[77]  O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New Journal of Physics, vol. 12, Article ID 033015, 2010.
[78]  A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Applied Physics Letters, vol. 30, no. 4, pp. 202–204, 1977.
[79]  S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Physical Review Letters, vol. 80, no. 4, pp. 688–691, 1998.
[80]  P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Physical Review Letters, vol. 83, no. 16, pp. 3174–3177, 1999.
[81]  D. Vitali, S. Mancini, L. Ribichini, and P. Tombesi, “Mirror quiescence and high-sensitivity position measurements with feedback,” Physical Review A, vol. 65, no. 6, Article ID 063803, 9 pages, 2002.
[82]  C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Physical Review A, vol. 77, no. 3, Article ID 033804, 9 pages, 2008.
[83]  P. Bushev, D. Rotter, A. Wilson, et al., “Feedback cooling of single trapped ion,” Physical Review Letters, vol. 96, Article ID 043003, 2006.
[84]  D. J. Heinzen and D. J. Wineland, “Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions,” Physical Review A, vol. 42, no. 5, pp. 2977–2994, 1990.
[85]  A. Serafini, A. Retzker, and M. B. Plenio, “Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and non-locality tests,” New Journal of Physics, vol. 11, Article ID 023007, 2009.
[86]  A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Information Processing, vol. 8, no. 6, pp. 619–630, 2009.
[87]  K. R. Brown, C. Ospelkaus, Y. Colombe, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Coupled quantized mechanical oscillators,” Nature, vol. 471, no. 7337, pp. 196–199, 2011.
[88]  O. Arcizet, P. F. Cohadon, T. Briant et al., “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Physical Review Letters, vol. 97, no. 13, Article ID 133601, 4 pages, 2006.
[89]  D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature, vol. 444, no. 7115, pp. 75–78, 2006.
[90]  T. Corbitt, C. Wipf, T. Bodiya et al., “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9?mK,” Physical Review Letters, vol. 99, no. 16, Article ID 160801, 4 pages, 2007.
[91]  M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever's fundamental mode below 5 mK,” Physical Review Letters, vol. 99, no. 1, Article ID 017201, 4 pages, 2007.
[92]  A. Vinante, M. Bignotto, M. Bonaldi et al., “Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature,” Physical Review Letters, vol. 101, no. 3, Article ID 033601, 4 pages, 2008.
[93]  J. Jahng, M. Lee, C. Stambaugh, W. Bak, and W. Jhe, “Active feedback cooling of massive electromechanical quartz resonators,” Physical Review A, vol. 84, no. 2, Article ID 022318, 5 pages, 2011.
[94]  T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nature Physics, vol. 7, no. 7, pp. 527–530, 2011.
[95]  J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Physical Review Letters, vol. 109, no. 10, Article ID 103603, 5 pages, 2012.
[96]  S. D. Wilson, A. R. R. Carvalho, J. J. Hope, and M. R. James, “Effects of measurement backaction in the stabilization of a Bose-Einstein condensate through feedback,” Physical Review A, vol. 76, no. 1, Article ID 013610, 6 pages, 2007.
[97]  S. S. Szigeti, M. R. Hush, A. R. R. Carvalho, and J. J. Hope, “Continuous measurement feedback control of a Bose-Einstein condensate using phase-contrast imaging,” Physical Review A, vol. 80, no. 1, Article ID 013614, 11 pages, 2009.
[98]  S. S. Szigeti, M. R. Hush, A. R. R. Carvalho, and J. J. Hope, “Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging,” Physical Review A, vol. 82, no. 4, Article ID 043632, 10 pages, 2010.
[99]  J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Reviews of Modern Physics, vol. 73, no. 3, pp. 565–582, 2001.
[100]  R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light and matter,” Journal of Physics B, vol. 38, no. 9, pp. S551–S565, 2005.
[101]  H. Walther, B. T. H. Varcoe, B.-G. Englert, and Th. Becker, “Cavity quantum electrodynamics,” Reports on Progress in Physics, vol. 69, p. 1325, 2006.
[102]  W. P. Smith, J. E. Reiner, L. A. Orozco, S. Kuhr, and H. M. Wiseman, “Capture and release of a conditional state of a cavity QED system by quantum feedback,” Physical Review Letters, vol. 89, no. 13, Article ID 133601, 4 pages, 2002.
[103]  J. E. Reiner, W. P. Smith, L. A. Orozco, H. M. Wiseman, and J. Gambetta, “Quantum feedback in a weakly driven cavity QED system,” Physical Review A, vol. 70, no. 2, Article ID 023819, 6 pages, 2004.
[104]  D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[105]  D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Physical Review Letters, vol. 80, no. 6, pp. 1121–1125, 1998.
[106]  N. K. Langford, T. J. Weinhold, R. Prevedel, et al., “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Physical Review Letters, vol. 95, no. 21, Article ID 210504, 4 pages, 2005.
[107]  N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Physical Review Letters, vol. 95, no. 21, Article ID 210505, 4 pages, 2005.
[108]  R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Physical Review Letters, vol. 95, no. 21, Article ID 210506, 4 pages, 2005.
[109]  G. G. Gillett, R. B. Dalton, B. P. Lanyon et al., “Experimental feedback control of quantum systems using weak measurements,” Physical Review Letters, vol. 104, no. 8, Article ID 080503, 4 pages, 2010.
[110]  F. Sciarrino, M. Ricci, F. De Martini, R. Filip, and L. M?ta Jr., “Realization of a minimal disturbance quantum measurement,” Physical Review Letters, vol. 96, no. 2, Article ID 020408, 4 pages, 2006.
[111]  M. G. Genoni and M. G. A. Paris, “Optimal quantum repeaters for qubits and qudits,” Physical Review A, vol. 71, no. 5, Article ID 052307, 5 pages, 2005.
[112]  S. Gleyzes, S. Kuhr, C. Guerlin et al., “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature, vol. 446, no. 7133, pp. 297–300, 2007.
[113]  C. Guerlin, J. Bernu, S. Deléglise et al., “Progressive field-state collapse and quantum non-demolition photon counting,” Nature, vol. 448, no. 7156, pp. 889–893, 2007.
[114]  S. Deléglise, I. Dotsenko, C. Sayrin et al., “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature, vol. 455, no. 7212, pp. 510–514, 2008.
[115]  H. Amini, A. Somaraju, I. Dotsenko, et al., “Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays,” http://arxiv.org/abs/1201.1387.
[116]  S. J. Van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science, vol. 279, no. 5348, pp. 205–208, 1998.
[117]  H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science, vol. 283, no. 5410, pp. 2050–2056, 1999.
[118]  H. Wang, M. Hofheinz, M. Ansmann, et al., “Measurement of the decay of fock states in a superconducting quantum circuit,” Physical Review Letters, vol. 101, no. 24, Article ID 240401, 4 pages, 2008.
[119]  M. Brune, J. Bernu, C. Guerlin et al., “Process tomography of field damping and measurement of fock state lifetimes by quantum nondemolition photon counting in a cavity,” Physical Review Letters, vol. 101, no. 24, Article ID 240402, 4 pages, 2008.
[120]  A. Serafini, S. De Siena, and F. Illuminati, “Decoherence of number states in phase-sensitive reservoirs,” Modern Physics Letters B, vol. 18, no. 14, pp. 687–695, 2004.
[121]  B. T. H. Varcoe, S. Brattke, M. Weldinger, and H. Walther, “Preparing pure photon number states of the radiation field,” Nature, vol. 403, no. 6771, pp. 743–746, 2000.
[122]  M. Hofheinz, E. M. Weig, M. Ansmann et al., “Generation of Fock states in a superconducting quantum circuit,” Nature, vol. 454, no. 7202, pp. 310–314, 2008.
[123]  M. Hofheinz, H. Wang, M. Ansmann et al., “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature, vol. 459, no. 7246, pp. 546–549, 2009.
[124]  M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: single-photon sources and detectors,” Review of Scientific Instruments, vol. 82, no. 7, Article ID 071101, 25 pages, 2011.
[125]  R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Generating and revealing a quantum superposition of electromagnetic-field binomial states in a cavity,” Physical Review A, vol. 76, no. 1, Article ID 011804, 4 pages, 2007.
[126]  R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Efficient generation of N-photon binomial states and their use in quantum gates in cavity QED,” Physics Letters, Section A, vol. 374, no. 22, pp. 2235–2242, 2010.
[127]  X. Zhou, I. Dotsenko, B. Peaudecerf et al., “Field locked to a fock state by quantum feedback with single photon corrections,” Physical Review Letters, vol. 108, no. 24, Article ID 243602, 5 pages, 2012.
[128]  A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Physical Review A, vol. 76, no. 1, Article ID 010301, 4 pages, 2007.
[129]  A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Physical Review A, vol. 78, no. 1, Article ID 012334, 10 pages, 2008.
[130]  R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Physical Review A, vol. 84, no. 2, Article ID 022332, 8 pages, 2011.
[131]  C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York, NY, USA, 1976.
[132]  V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330–1336, 2004.
[133]  V. Giovannetti, S. Lloyd, and L. MacCone, “Advances in quantum metrology,” Nature Photonics, vol. 5, no. 4, pp. 222–229, 2011.
[134]  H. M. Wiseman, “Adaptive phase measurements of optical modes: going beyond the marginal Q distribution,” Physical Review Letters, vol. 75, no. 25, pp. 4587–4590, 1995.
[135]  M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H. Mabuchi, “Adaptive homodyne measurement of optical phase,” Physical Review Letters, vol. 89, no. 13, Article ID 133602, 4 pages, 2002.
[136]  D. W. Berry and H. M. Wiseman, “Optimal states and almost optimal adaptive measurements for quantum interferometry,” Physical Review Letters, vol. 85, no. 24, pp. 5098–5101, 2000.
[137]  D. W. Berry and H. M. Wiseman, “Adaptive quantum measurements of a continuously varying phase,” Physical Review A, vol. 65, no. 4, Article ID 043803, 11 pages, 2002.
[138]  D. W. Berry and H. M. Wiseman, “Adaptive phase measurements for narrowband squeezed beams,” Physical Review A, vol. 73, no. 6, Article ID 063824, 13 pages, 2006.
[139]  B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature, vol. 450, no. 7168, pp. 393–396, 2007.
[140]  T. A. Wheatley, D. W. Berry, H. Yonezawa et al., “Adaptive optical phase estimation using time-symmetric quantum smoothing,” Physical Review Letters, vol. 104, no. 9, Article ID 093601, 4 pages, 2010.
[141]  G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, and G. J. Pryde, “Entanglement-enhanced measurement of a completely unknown optical phase,” Nature Photonics, vol. 5, no. 1, pp. 43–47, 2011.
[142]  H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” Journal of Modern Optics, vol. 49, no. 14-15, pp. 2325–2338, 2002.
[143]  A. Fujiwara, “Strong consistency and asymptotic efficiency for adaptive quantum estimation problems,” Journal of Physics A, vol. 39, no. 40, pp. 12489–12504, 2006.
[144]  R. Okamoto, M. Iefuji, S. Oyama et al., “Experimental demonstration of adaptive quantum state estimation,” Physical Review Letters, vol. 109, no. 13, Article ID 130404, 5 pages, 2012.
[145]  R. L. Cook, P. J. Martin, and J. M. Geremia, “Optical coherent state discrimination using a closed-loop quantum measurement,” Nature, vol. 446, no. 7137, pp. 774–777, 2007.
[146]  B. L. Higgins, B. M. Booth, A. C. Doherty, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Mixed state discrimination using optimal control,” Physical Review Letters, vol. 103, no. 22, Article ID 220503, 4 pages, 2009.
[147]  A. Acín, E. Bagan, M. Baig, Ll. Masanes, and R. Mu?oz-Tapia, “Multiple-copy two-state discrimination with individual measurements,” Physical Review A, vol. 71, no. 3, Article ID 032338, p. 5, 2005.
[148]  A. Hentschel and B. C. Sanders, “Machine learning for precise quantum measurement,” Physical Review Letters, vol. 104, no. 6, Article ID 063603, 4 pages, 2010.
[149]  S. Lloyd, “Coherent quantum feedback,” Physical Review A, vol. 62, no. 2, pp. 022108–022101, 2000.
[150]  H. M. Wiseman and G. J. Milburn, “All-optical versus electro-optical quantum-limited feedback,” Physical Review A, vol. 49, no. 5, pp. 4110–4125, 1994.
[151]  R. J. Nelson, Y. Weinstein, D. Cory, and S. Lloyd, “Experimental demonstration of fully coherent quantum feedback,” Physical Review Letters, vol. 85, no. 14, pp. 3045–3048, 2000.
[152]  M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Physical Review A, vol. 30, no. 3, pp. 1386–1391, 1984.
[153]  J. E. Gough, R. Gohm, and M. Yanagisawa, “Linear quantum feedback networks,” Physical Review A, vol. 78, no. 6, Article ID 062104, 11 pages, 2008.
[154]  J. Gough and M. R. James, “Quantum feedback networks: hamiltonian formulation,” Communications in Mathematical Physics, vol. 287, no. 3, pp. 1109–1132, 2009.
[155]  J. E. Gough, M. R. James, and H. I. Nurdin, “Squeezing components in linear quantum feedback networks,” Physical Review A, vol. 81, no. 2, Article ID 023804, 15 pages, 2010.
[156]  M. Yanagisawa and H. Kimura, “Transfer function approach to quantum control-part I: dynamics of quantum feedback systems,” IEEE Transactions on Automatic Control, vol. 48, no. 12, pp. 2107–2120, 2003.
[157]  M. Yanagisawa and H. Kimura, “Transfer function approach to quantum control—part II: control concepts and applications,” IEEE Transactions on Automatic Control, vol. 48, no. 12, pp. 2121–2132, 2003.
[158]  J. E. Gough and S. Wildfeuer, “Enhancement of field squeezing using coherent feedback,” Physical Review A, vol. 80, no. 4, Article ID 042107, 8 pages, 2009.
[159]  S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa, “Experimental demonstration of coherent feedback control on optical field squeezing,” IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2045–2050, 2012.
[160]  Z. Yan, X. Jia, C. Xie, and K. Peng, “Coherent feedback control of multipartite quantum entanglement for optical fields,” Physical Review A, vol. 84, no. 6, Article ID 062304, 6 pages, 2011.
[161]  R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Physical Review Letters, vol. 109, no. 17, Article ID 173602, 5 pages, 2012.
[162]  R. Hamerly and H. Mabuchi, “Coherent controllers for optical-feedback cooling of quantum oscillators,” http://arxiv.org/abs/1206.2688.
[163]  M. R. James, H. I. Nurdin, and I. R. Petersen, “H∞ control of linear quantum stochastic systems,” IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1787–1803, 2008.
[164]  A. I. Maalouf and I. R. Petersen, “Coherent H∞ control for a class of annihilation operator linear quantum systems,” IEEE Transactions on Automatic Control, vol. 56, no. 2, pp. 309–319, 2011.
[165]  H. I. Nurdin, M. R. James, and I. R. Petersen, “Coherent quantum LQG control,” Automatica, vol. 45, no. 8, pp. 1837–1846, 2009.
[166]  M. G. Genoni, A. Serafini, M. S. Kim, and D. Burgarth, “Dynamical recurrence and the quantum control of coupled oscillators,” Physical Review Letters, vol. 108, no. 15, Article ID 150501, 5 pages, 2012.
[167]  Press Release of the Swedish Royal Academy of Sciences, http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/press.html.
[168]  M. Mirrahimi, B. Huard, and M. H. Devoret, “Strong measurement and quantum feedback for persistent Rabi oscillations in circuit QED experiments,” in Proceedings of the 51st IEEE Conference on Decision and Control, 2012.
[169]  J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction,” Physical Review Letters, vol. 105, no. 4, Article ID 040502, 4 pages, 2010.
[170]  H. Mabuchi, “Coherent-feedback control strategy to suppress spontaneous switching in ultra-low power optical bistability,” http://arxiv.org/abs/1101.3461.
[171]  B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” Journal of Mathematical Physics, vol. 18, no. 4, pp. 756–763, 1976.
[172]  J. M. Raimond, P. Facchi, B. Peaudecerf et al., “Quantum Zeno dynamics of a field in a cavity,” Physical Review A, vol. 86, no. 3, Article ID 032120, 15 pages, 2012.
[173]  A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Integrated quantum photonics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 6, pp. 1673–1684, 2009.
[174]  S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Physical Review A, vol. 66, no. 3, Article ID 030302, 5 pages, 2002.
[175]  A. Furusawa, J. L. S?rensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science, vol. 282, no. 5389, pp. 706–709, 1998.
[176]  D. Simon, Optimal State Estimation: Kalman, H infiNity, and Nonlinear Approaches, Wiley, Hoboken, NJ, USA, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133