Aim. To evaluate the profile of ocular gaze abnormalities occurring following stroke. Methods. Prospective multicentre cohort trial. Standardised referral and investigation protocol including assessment of visual acuity, ocular alignment and motility, visual field, and visual perception. Results. 915 patients recruited: mean age 69.18 years (SD 14.19). 498 patients (54%) were diagnosed with ocular motility abnormalities. 207 patients had gaze abnormalities including impaired gaze holding (46), complete gaze palsy (23), horizontal gaze palsy (16), vertical gaze palsy (17), Parinaud’s syndrome (8), INO (20), one and half syndrome (3), saccadic palsy (28), and smooth pursuit palsy (46). These were isolated impairments in 50% of cases and in association with other ocular abnormalities in 50% including impaired convergence, nystagmus, and lid or pupil abnormalities. Areas of brain stroke were frequently the cerebellum, brainstem, and diencephalic areas. Strokes causing gaze dysfunction also involved cortical areas including occipital, parietal, and temporal lobes. Symptoms of diplopia and blurred vision were present in 35%. 37 patients were discharged, 29 referred, and 141 offered review appointments. 107 reviewed patients showed full recovery (4%), partial improvement (66%), and static gaze dysfunction (30%). Conclusions. Gaze dysfunction is common following stroke. Approximately one-third of patients complain of visual symptoms, two thirds show some improvement in ocular motility. 1. Introduction Ocular motility (eye movement) problems are reported commonly following stroke in up to 68% of cases [1–5]. These problems can include cranial nerve palsy [6], vergence and accommodative dysfunction [3], strabismus [2, 7], and nystagmus [8]. Such eye movement abnormalities can cause symptoms of diplopia, blurred vision, compensatory head posture, nausea, and dizziness because of the inability to move one or both eyes into a particular gaze direction [1, 9, 10]. These symptoms can impact on activities of daily living and quality of life by impairing reading ability and hindering mobility because of instability [11]. Gaze abnormalities may include horizontal and/or vertical conjugate gaze palsy, internuclear ophthalmoplegia (INO), one and a half syndrome, and saccadic and smooth pursuit palsy [12]. Much of the medical literature describing these gaze abnormalities is in the form of case reports and small case series of individual types of gaze abnormality [13–17]. However, there are few large scale studies documenting these problems in stroke populations. We sought
References
[1]
F. Rowe, D. Brand, C. A. Jackson et al., “Visual impairment following stroke: do stroke patients require vision assessment?” Age and Ageing, vol. 38, no. 2, pp. 188–193, 2009.
[2]
M. S. Fowler, D. T. Wade, A. J. Richardson, and J. F. Stein, “Squints and diplopia seen after brain damage,” Journal of Neurology, vol. 243, no. 1, pp. 86–90, 1996.
[3]
K. J. Ciuffreda, N. Kapoor, D. Rutner, I. B. Suchoff, M. E. Han, and S. Craig, “Occurrence of oculomotor dysfunctions in acquired brain injury: a retrospective analysis,” Optometry, vol. 78, no. 4, pp. 155–161, 2007.
[4]
C. MacIntosh, “Stroke re-visited: visual problems following stroke and their effect on rehabilitation,” British Orthoptic Journal, vol. 60, pp. 10–14, 2003.
[5]
C. F. Freeman and N. B. Rudge, “Cerebrovascular accident and the orthoptist,” British Orthoptic Journal, no. 45, pp. 8–18, 1988.
[6]
F. Rowe, D. Brand, C. A. Jackson et al., “Prevalence of ocular motor cranial nerve palsy and associations following stroke,” Eye, vol. 25, no. 7, pp. 881–887, 2011.
[7]
F. Rowe, D. Brand, C. A. Jackson et al., “The profile of strabismus in stroke survivors,” Eye, vol. 24, no. 4, pp. 682–685, 2010.
[8]
F. J. Rowe, D. Brand, C. A. Jackson et al., “The spectrum of nystagmus following cerebro-vascular accident,” British and Irish Orthoptic Journal, vol. 5, pp. 22–25, 2008.
[9]
B. T. Troost, “Dizziness and vertigo in vertebrobasilar disease. Part I: peripheral and systemic causes of dizziness,” Stroke, vol. 11, no. 3, pp. 301–303, 1980.
[10]
B. T. Troost, “Dizziness and vertigo in vertebrobasilar disease. Part II. Central causes and vertebrobasilar disease,” Stroke, vol. 11, no. 4, pp. 413–415, 1980.
[11]
F. J. Rowe, D. Brand, C. A. Jackson et al., “Reading impairment following stroke: ocular and non ocular causes,” International Journal of Stroke, vol. 6, pp. 404–411, 2011.
[12]
R. A. Pedersen and B. T. Troost, “Abnormalities of gaze in cerebrovascular disease,” Stroke, vol. 12, no. 2, pp. 251–254, 1981.
[13]
A. C. Felicio, D. B. Bichuetti, L. F. Marin, W. A. C. dos Santos, and C. Godeiro-Junior, “Bilateral horizontal gaze palsy with unilateral peripheral facial paralysis caused by pontine tegmentum infarction,” Journal of Stroke and Cerebrovascular Diseases, vol. 18, no. 3, pp. 244–246, 2009.
[14]
M. Alemdar, S. Kamaci, and F. Budak, “Unilateral midbrain infarction causing upward and downward gaze palsy,” Journal of Neuro-Ophthalmology, vol. 26, no. 3, pp. 173–176, 2006.
[15]
S. Kataoka, A. Hori, T. Shirakawa, and G. Hirose, “Paramedian pontine infarction: neurological/topographical correlation,” Stroke, vol. 28, no. 4, pp. 809–815, 1997.
[16]
D. Deleu, “Selective vertical saccadic palsy from unilateral medial thalamic infarction: clinical, neurophysiologic and MRI correlates,” Acta Neurologica Scandinavica, vol. 96, no. 5, pp. 332–336, 1997.
[17]
H. J. Cho, H. Y. Choi, Y. D. Kim, S. W. Seo, and J. H. Heo, “The clinical syndrome and etiological mechanism of infarction involving the nucleus prepositus hypoglossi,” Cerebrovascular Diseases, vol. 26, no. 2, pp. 178–183, 2008.
[18]
M. Karatas, “Internuclear and supranuclear disorders of eye movements: clinical features and causes,” European Journal of Neurology, vol. 16, no. 12, pp. 1265–1277, 2009.
[19]
F. J. Rowe, “Supranuclear and internuclear control of eye movements: a review,” British Orthoptic Journal, vol. 60, pp. 2–9, 2003.
[20]
C. Pierrot-Deseilligny, “Nuclear, internuclear, and supranuclear ocular motor disorders,” Handbook of Clinical Neurology, vol. 102, pp. 319–331, 2011.
[21]
L. Pickett and F. J. Rowe, “Enhancement of quality of life in progressive supranuclear palsy: a review of clinical practice elements,” British and Irish Orthoptic Journal, vol. 7, pp. 14–19, 2010.
[22]
E. Lee, J. S. Kim, J. S. Kim, H. S. Song, S. M. Kim, and S. U. Kwon, “A small dorsal pontine infarction presenting with total gaze palsy including vertical saccades and pursuit,” Journal of Clinical Neurology, vol. 3, no. 4, pp. 208–211, 2007.
[23]
M. J. Thurtell and G. M. Halmagyi, “Complete ophthalmoplegia: an unusual sign of bilateral paramedian midbrain-thalamic infarction,” Stroke, vol. 39, no. 4, pp. 1355–1357, 2008.
[24]
E. Kumral, G. Bayülkem, and D. Evyapan, “Clinical spectrum of pontine infarction: clinical-MRI correlations,” Journal of Neurology, vol. 249, no. 12, pp. 1659–1670, 2002.
[25]
J. S. Kim, “Internuclear ophthalmoplegia as an isolated or predominant symptom of brainstem infarction,” Neurology, vol. 62, no. 9, pp. 1491–1496, 2004.
[26]
J. R. Keane, “Internuclear ophthalmoplegia: unusual causes in 114 of 410 patients,” Archives of Neurology, vol. 62, no. 5, pp. 714–717, 2005.
[27]
P. E. Jiménez Caballero, “Bilateral paramedian thalamic artery infarcts: report of 10 cases,” Journal of Stroke and Cerebrovascular Diseases, vol. 19, no. 4, pp. 283–289, 2010.
[28]
P. J. Ranalli, J. A. Sharpe, and W. A. Fletcher, “Palsy of upward and downward saccadic, pursuit, and vestibular movements with a unilateral midbrain lesion: pathophysiologic correlations,” Neurology, vol. 38, no. 1, pp. 114–122, 1988.
[29]
D. Braun, H. Weber, T. Mergner, and J. Schulte-Monting, “Saccadic reaction times in patients with frontal and parietal lesions,” Brain, vol. 115, part 5, pp. 1359–1386, 1992.
[30]
J. Zihl, “Visual scanning behavior in patients with homonymous hemianopia,” Neuropsychologia, vol. 33, no. 3, pp. 287–303, 1995.
[31]
A. L. M. Pambakian, S. K. Mannan, T. L. Hodgson, and C. Kennard, “Saccadic visual search training: a treatment for patients with homonymous hemianopia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 10, pp. 1443–1448, 2004.
[32]
S. Khan, E. Leung, and W. M. Jay, “Stroke and visual rehabilitation,” Topics in Stroke Rehabilitation, vol. 15, no. 1, pp. 27–36, 2008.
[33]
K. J. Ciuffreda, D. Rutner, N. Kapoor, I. B. Suchoff, S. Craig, and M. E. Han, “Vision therapy for oculomotor dysfunctions in acquired brain injury: a retrospective analysis,” Optometry, vol. 79, no. 1, pp. 18–22, 2008.
[34]
E. C. Campos, C. Schiavi, and C. Bellusci, “Surgical management of anomalous head posture because of horizontal gaze palsy or acquired vertical nystagmus,” Eye, vol. 17, no. 5, pp. 587–592, 2003.
[35]
R. Murthy, E. Dawson, S. Khan, G. G. Adams, and J. Lee, “Botulinum toxin in the management of internuclear ophthalmoplegia,” Journal of AAPOS, vol. 11, no. 5, pp. 456–459, 2007.
[36]
E. G. Buckley and S. Holgado, “Surgical treatment of upgaze palsy in Parinaud's syndrome,” Journal of AAPOS, vol. 8, no. 3, pp. 249–253, 2004.
[37]
A. C. Spielmann, “Convergence excess associated with neurological diseases: surgical treatment,” Journal Francais d'Ophtalmologie, vol. 29, no. 4, pp. 432–437, 2006.
[38]
R. Cracknell, The Ageing Population. Key Issues for the New Parliament 2010, House of Commons Library Research, 2010.
F. J. Rowe, D. Brand, C. A. Jackson et al., “Accuracy of referrals for visual assessment in a stroke population,” Eye, vol. 25, no. 2, pp. 161–167, 2011.