全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques

DOI: 10.1155/2014/724546

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties. 1. Introduction Corneal biomechanics is a branch of science that studies deformation and equilibrium of corneal tissue under the application of any force [1]. The structure and hence the properties of a soft tissue, such as the cornea, are dependent on the biochemical and physical nature of the components present and their relative amounts. The mechanical properties of a tissue depend on how the fibres, cells, and ground substance are organized into a structure [2]. Collagen and elastin are responsible for the strength and elasticity of a tissue, while the ground substance is responsible for the viscoelastic properties. All these terms are important because the cornea is considered a viscoelastic material and some devices try to measure and even differentiate between the different components of the biomechanical behavior of the living corneal tissue [3]. In the specific case of the human cornea, collagen in Bowman’s layer and stroma accounting for over 80% of the dry weight of the cornea would be the major contributor to corneal elasticity. The ground substance, formed mostly by proteoglycans and keratocytes or fibroblasts, would provide the viscous behaviour. The corneal epithelium accounting for 10% of the central corneal thickness could also contribute to the viscous behaviour. It is important to bear in mind that the corneal epithelium is easily deformable and is the reference surface for most of the biomechanical corneal measurements. Over the past two decades, researchers have developed a variety of techniques that can alter corneal surface

References

[1]  J. G. Hay, The Biomechanics of Sports Techniques, Prentice-Hall, Englewood Cliffs, NJ, USA, 4th edition, 1993.
[2]  L. Ambrosio, P. A. Netti, and L. Nicolais, Soft Tissue, Springer, New York, NY, USA, 2002.
[3]  D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an Ocular Response Analyzer,” Journal of Cataract and Refractive Surgery, vol. 31, no. 1, pp. 156–162, 2005.
[4]  D. Ortiz, D. Pi?ero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” Journal of Cataract and Refractive Surgery, vol. 33, no. 8, pp. 1371–1375, 2007.
[5]  J. M. González-Méijome, C. Villa-Collar, A. Queirós, J. Jorge, and M. A. Parafita, “Pilot study on the influence of corneal biomechanical properties over the short term in response to corneal refractive therapy for myopia,” Cornea, vol. 27, no. 4, pp. 421–426, 2008.
[6]  C. Kirwan and M. O'Keefe, “Corneal hysteresis using the Reichert ocular response analyser: findings pre- and post-LASIK and LASEK,” Acta Ophthalmologica, vol. 86, no. 2, pp. 215–218, 2008.
[7]  A. Grise-Dulac, A. Saad, O. Abitbol et al., “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” Journal of Glaucoma, vol. 21, no. 7, pp. 486–489, 2012.
[8]  D. A. Hoeltzel, P. Altman, K. Buzard, and K.-I. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” Journal of Biomechanical Engineering, vol. 114, no. 2, pp. 202–215, 1992.
[9]  N. E. Dowling, Mechanical Behavior of Materials, Engineering Methods for Deformation Fracture and Fatigue, Upper Saddle River, NJ, USA, 3rd edition, 2007.
[10]  J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis,” Journal of Cataract and Refractive Surgery, vol. 31, no. 1, pp. 146–155, 2005.
[11]  N. J. Schwartz, R. S. Mackay, and J. L. Sackman, “A theoretical and experimental study of the mechanical behavior of the cornea with application to the measurement of intraocular pressure,” The Bulletin of Mathematical Biophysics, vol. 28, no. 4, pp. 585–643, 1966.
[12]  B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” Journal of Biomechanics, vol. 19, no. 10, pp. 847–853, 1986.
[13]  J. O. Hjortdal, “On the biomechanical properties of the cornea with particular reference to refractive surgery,” Acta Ophthalmologica Scandinavica, vol. 76, no. 225, pp. 1–23, 1998.
[14]  S. L.-Y. Woo, A. S. Kobayashi, W. A. Schlegel, and C. Lawrence, “Nonlinear material properties of intact cornea and sclera,” Experimental Eye Research, vol. 14, no. 1, pp. 29–39, 1972.
[15]  T. T. Andreassen, A. H. Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Experimental Eye Research, vol. 31, no. 4, pp. 435–441, 1980.
[16]  I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Experimental Eye Research, vol. 35, no. 5, pp. 413–424, 1982.
[17]  J. O. Hjortdal, “Extensibility of the normo-hydrated human cornea,” Acta Ophthalmologica Scandinavica, vol. 73, no. 1, pp. 12–17, 1995.
[18]  H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” Journal of Biomechanics, vol. 29, no. 12, pp. 1633–1636, 1996.
[19]  M. R. Bryant and P. J. McDonnell, “Constitutive laws for biomechanical modeling of refractive surgery,” Journal of Biomechanical Engineering, vol. 118, no. 4, pp. 473–481, 1996.
[20]  A. Elsheikh, D. Wang, M. Brown, P. Rama, M. Campanelli, and D. Pye, “Assessment of corneal biomechanical properties and their variation with age,” Current Eye Research, vol. 32, no. 1, pp. 11–19, 2007.
[21]  K. E. Hamilton and D. C. Pye, “Young's modulus in normal corneas and the effect on applanation tonometry,” Optometry and Vision Science, vol. 85, no. 6, pp. 445–450, 2008.
[22]  J. Liu and H. Qi, “Dissipated energy function, hysteresis and precondition of a viscoelastic solid model,” Nonlinear Analysis: Real World Applications, vol. 11, no. 2, pp. 907–912, 2010.
[23]  S. Feizi, K. Jadidi, and M. Soheilian, “Possible protection of the posterior segment by a phakic intraocular lens,” Journal of Cataract and Refractive Surgery, vol. 33, no. 12, pp. 2144–2146, 2007.
[24]  A. Lam, D. Chen, R. Chiu, and W. S. Chui, “Comparison of IOP measurements between ORA and GAT in normal Chinese,” Optometry and Vision Science, vol. 84, no. 9, pp. 909–914, 2007.
[25]  J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” The American Journal of Ophthalmology, vol. 143, no. 1, pp. 39–47, 2007.
[26]  A. Kotecha, A. Elsheikh, C. R. Roberts, H. Zhu, and D. F. Garway-Heath, “Corneal thickness- and age-related biomechanical properties of the cornea measured with the Ocular Response Analyzer,” Investigative Ophthalmology and Visual Science, vol. 47, no. 12, pp. 5337–5347, 2006.
[27]  W. Lau and D. Pye, “A clinical description of Ocular Response Analyzer measurements,” Investigative Ophthalmology and Visual Science, vol. 52, no. 6, pp. 2911–2916, 2011.
[28]  D. Touboul, A. Bénard, A. M. Mahmoud, A. Gallois, J. Colin, and C. J. Roberts, “Early biomechanical keratoconus pattern measured with an Ocular Response Analyzer: curve analysis,” Journal of Cataract and Refractive Surgery, vol. 37, no. 12, pp. 2144–2150, 2011.
[29]  J. Y. Shin, J. S. Choi, J. Y. Oh, M. K. Kim, J. H. Lee, and W. R. Wee, “Evaluation of corneal biomechanical properties following penetrating keratoplasty using the Ocular Response Analyzer,” Korean Journal of Ophthalmology, vol. 24, no. 3, pp. 139–142, 2010.
[30]  S. Franco and M. Lira, “Biomechanical properties of the cornea measured by the Ocular Response Analyzer and their association with intraocular pressure and the central corneal curvature,” Clinical and Experimental Optometry, vol. 92, no. 6, pp. 469–475, 2009.
[31]  F. A. Medeiros and R. N. Weinreb, “Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the Ocular Response Analyzer,” Journal of Glaucoma, vol. 15, no. 5, pp. 364–370, 2006.
[32]  A. K. C. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the Ocular Response Analyzer,” Optometry and Vision Science, vol. 87, no. 3, pp. 195–199, 2010.
[33]  J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” Journal of Cataract and Refractive Surgery, vol. 34, no. 3, pp. 510–513, 2008.
[34]  E. Spoerl, N. Terai, F. Scholz, F. Raiskup, and L. E. Pillunat, “Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software,” Journal of Refractive Surgery, vol. 27, no. 6, pp. 452–457, 2011.
[35]  S. Zarei-Ghanavati, A. Ramirez-Miranda, F. Yu, and D. R. Hamilton, “Corneal deformation signal waveform analysis in keratoconic versus post-femtosecond laser in situ keratomileusis eyes after statistical correction for potentially confounding factors,” Journal of Cataract and Refractive Surgery, vol. 38, no. 4, pp. 607–614, 2012.
[36]  M. Sedaghat, M. Naderi, and M. Zarei-Ghanavati, “Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis,” Journal of Cataract and Refractive Surgery, vol. 36, no. 10, pp. 1728–1731, 2010.
[37]  C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta Ophthalmologica, vol. 66, no. 2, pp. 134–140, 1988.
[38]  C. Kirwan, M. O'keefe, and B. Lanigan, “Corneal hysteresis and intraocular pressure measurement in children using the reichert Ocular Response Analyzer,” The American Journal of Ophthalmology, vol. 142, no. 6, pp. 990–992, 2006.
[39]  S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the Ocular Response Analyzer in normal and keratoconic eyes,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3026–3031, 2007.
[40]  L. Lim, G. Gazzard, Y. H. Chan et al., “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 3852–3857, 2008.
[41]  M. Shen, F. Fan, A. Xue, J. Wang, X. Zhou, and F. Lu, “Biomechanical properties of the cornea in high myopia,” Vision Research, vol. 48, no. 21, pp. 2167–2171, 2008.
[42]  O. Abitbol, J. Bouden, S. Doan, T. Hoang-Xuan, and D. Gatinel, “Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes,” Acta Ophthalmologica, vol. 88, no. 1, pp. 116–119, 2010.
[43]  K. Kamiya, K. Shimizu, and F. Ohmoto, “Effect of aging on corneal biomechanical parameters using the Ocular Response Analyzer,” Journal of Refractive Surgery, vol. 25, no. 10, pp. 888–893, 2009.
[44]  T. Kida, J. H. K. Liu, and R. N. Weinreb, “Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure,” The American Journal of Ophthalmology, vol. 146, no. 4, pp. 567–572, 2008.
[45]  K. Mansouri, M. T. Leite, R. N. Weinreb, A. Tafreshi, L. M. Zangwill, and F. A. Medeiros, “Association between corneal biomechanical properties and glaucoma severity,” The American Journal of Ophthalmology, vol. 153, no. 3, pp. 419–427, 2012.
[46]  P. J. Foster, D. C. Broadway, D. F. Garway-Heath et al., “Intraocular pressure and corneal biomechanics in an adult British population: the EPIC-Norfolk eye study,” Investigative ophthalmology & visual science, vol. 52, no. 11, pp. 8179–8185, 2011.
[47]  A. Daxer, K. Misof, B. Grabner, A. Ettl, and P. Fratzl, “Collagen fibrils in the human corneal stroma: structure and aging,” Investigative Ophthalmology and Visual Science, vol. 39, no. 3, pp. 644–648, 1998.
[48]  A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” Journal of the Royal Society Interface, vol. 7, no. 51, pp. 1475–1485, 2010.
[49]  N. E. Knox Cartwright, J. R. Tyrer, and J. Marshall, “Age-related differences in the elasticity of the human cornea,” Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4324–4329, 2011.
[50]  S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Contact Lens and Anterior Eye, vol. 29, no. 5, pp. 257–262, 2006.
[51]  M. A. del Buey, J. A. Cristóbal, F. J. Ascaso, L. Lavilla, and E. Lanchares, “Biomechanical properties of the cornea in fuchs' corneal dystrophy,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3199–3202, 2009.
[52]  M. T. Leite, L. M. Alencar, C. Gore et al., “Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer,” The American Journal of Ophthalmology, vol. 150, no. 2, pp. 163–168, 2010.
[53]  S. J. Haseltine, J. Pae, J. R. Ehrlich, M. Shammas, and N. M. Radcliffe, “Variation in corneal hysteresis and central corneal thickness among black, hispanic and white subjects,” Acta Ophthalmologica, vol. 90, no. 8, pp. e626–e631, 2012.
[54]  T. Kida, J. H. K. Liu, and R. N. Weinreb, “Effect of 24-hour corneal biomechanical changes on intraocular pressure measurement,” Investigative Ophthalmology and Visual Science, vol. 47, no. 10, pp. 4422–4426, 2006.
[55]  S. W. Chang, I. L. Tsai, F. R. Hu, L. L. K. Lin, and Y. F. Shih, “The cornea in young myopic adults,” British Journal of Ophthalmology, vol. 85, no. 8, pp. 916–920, 2001.
[56]  Z. Jiang, M. Shen, G. Mao et al., “Association between corneal biomechanical properties and myopia in Chinese subjects,” Eye, vol. 25, no. 8, pp. 1083–1089, 2011.
[57]  A. Plakitsi, C. O'Donnell, M. A Miranda, W. N. Charman, and H. Radhakrishnan, “Corneal biomechanical properties measured with the ocular response analyser in a myopic population,” Ophthalmic and Physiological Optics, vol. 31, no. 4, pp. 404–412, 2011.
[58]  S. Xu, A. Xu, A. Tao, J. Wang, F. Fan, and F. Lu, “Corneal biomechanical properties and intraocular pressure in high myopic anisometropia,” Eye and Contact Lens, vol. 36, no. 4, pp. 204–209, 2010.
[59]  Y. Song, N. Congdon, L. Li et al., “Corneal hysteresis and axial length among Chinese secondary school children: the xichang pediatric refractive error study (X-PRES) report no. 4,” The American Journal of Ophthalmology, vol. 145, no. 5, pp. 819–826, 2008.
[60]  H. Radhakrishnan, M. A. Miranda, and C. O'Donnell, “Corneal biomechanical properties and their correlates with refractive error,” Clinical and Experimental Optometry, vol. 95, no. 1, pp. 12–18, 2012.
[61]  H. Goldmann and T. Schmidt, “On applanation tonography,” Ophthalmologica, vol. 150, no. 1, pp. 65–75, 1965.
[62]  P. G. Davey, A. Elsheikh, and D. F. Garway-Heath, “Clinical evaluation of multiparameter correction equations for Goldmann applanation tonometry,” Eye, vol. 27, no. 5, pp. 621–629, 2013.
[63]  J. R. Ehrlich, S. Haseltine, M. Shimmyo, and N. M. Radcliffe, “Evaluation of agreement between intraocular pressure measurements using Goldmann applanation tonometry and Goldmann correlated intraocular pressure by Reichert's ocular response analyser,” Eye, vol. 24, no. 10, pp. 1555–1560, 2010.
[64]  N. H. L. Bayoumi, A. S. Bessa, and A. A. K. El Massry, “Ocular Response Analyzer and Goldmann applanation tonometry: a comparative study of findings,” Journal of Glaucoma, vol. 19, no. 9, pp. 627–631, 2010.
[65]  D. Touboul, C. Roberts, J. Kérautret et al., “Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry,” Journal of Cataract and Refractive Surgery, vol. 34, no. 4, pp. 616–622, 2008.
[66]  K. Kamiya, M. Hagishima, F. Fujimura, and K. Shimizu, “Factors affecting corneal hysteresis in normal eyes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 10, pp. 1491–1494, 2008.
[67]  M. Detry-Morel, J. Jamart, F. Hautenauven, and S. Pourjavan, “Comparison of the corneal biomechanical properties with the Ocular Response Analyzer (ORA) in African and Caucasian normal subjects and patients with glaucoma,” Acta Ophthalmologica, vol. 90, no. 2, pp. e118–e124, 2012.
[68]  J. M. González-MIijome, A. Queirós, J. Jorge, A. Díaz-Rey, and M. A. Parafita, “Intraoffice variability of corneal biomechanical parameters and Intraocular Pressure (IOP),” Optometry and Vision Science, vol. 85, no. 6, pp. 457–462, 2008.
[69]  A. Poostchi, S. Nicholas, and A. P. Wells, “Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma,” The American Journal of Ophthalmology, vol. 149, no. 3, pp. 524–525, 2010.
[70]  A. B. Cankaya, E. Beyazyildiz, D. Ileri, and F. Ozturk, “The effect of contact lens usage on corneal biomechanical parameters in myopic patients,” Cornea, vol. 31, no. 7, pp. 764–769, 2012.
[71]  N. Hutchings, T. L. Simpson, C. Hyun et al., “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Investigative Ophthalmology and Visual Science, vol. 51, no. 9, pp. 4579–4584, 2010.
[72]  A. M. Moezzi, D. Fonn, J. Varikooty, and D. Richter, “Distribution of overnight corneal swelling across subjects with 4 different silicone hydrogel lenses,” Eye and Contact Lens, vol. 37, no. 2, pp. 61–65, 2011.
[73]  F. Lu, S. Xu, J. Qu et al., “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” The American Journal of Ophthalmology, vol. 143, no. 4, pp. 616–622, 2007.
[74]  W. Lau and D. Pye, “Changes in corneal biomechanics and applanation tonometry with induced corneal swelling,” Investigative Ophthalmology & Visual Science, vol. 52, no. 6, pp. 3207–3214, 2011.
[75]  A. Alharbi and H. A. Swarbrick, “The effects of overnight orthokeratology lens wear on corneal thickness,” Investigative Ophthalmology and Visual Science, vol. 44, no. 6, pp. 2518–2523, 2003.
[76]  C. Villa-Collar, J. M. González-Méijome, A. Queirós, and J. Jorge, “Short-term corneal response to corneal refractive therapy for different refractive targets,” Cornea, vol. 28, no. 3, pp. 311–316, 2009.
[77]  D. Chen, A. K. C. Lam, and P. Cho, “A pilot study on the corneal biomechanical changes in short-term orthokeratology,” Ophthalmic and Physiological Optics, vol. 29, no. 4, pp. 464–471, 2009.
[78]  X. J. Mao, C. C. Huang, L. Chen, and F. Lü, “A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology,” Chinese Journal of Ophthalmology, vol. 46, no. 3, pp. 209–213, 2010.
[79]  A. Nieto-Bona, A. González-Mesa, C. Villa-Collar, and A. Lorente-Velázquez, “Biomechanical properties in corneal refractive therapy during adaptation period and after treatment interruption: a pilot study,” Journal of Optometry, vol. 5, no. 4, pp. 164–1170, 2012.
[80]  J. Jayakumar and H. A. Swarbrick, “The effect of age on short-term orthokeratology,” Optometry and Vision Science, vol. 82, no. 6, pp. 505–511, 2005.
[81]  D. R. Hamilton, R. D. Johnson, N. Lee, and N. Bourla, “Differences in the corneal biomechanical effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or femtosecond laser,” Journal of Cataract and Refractive Surgery, vol. 34, no. 12, pp. 2049–2056, 2008.
[82]  M. A. Qazi, J. P. Sanderson, A. M. Mahmoud, E. Y. Yoon, C. J. Roberts, and J. S. Pepose, “Postoperative changes in intraocular pressure and corneal biomechanical metrics. Laser in situ keratomileusis versus laser-assisted subepithelial keratectomy,” Journal of Cataract and Refractive Surgery, vol. 35, no. 10, pp. 1774–1788, 2009.
[83]  K. Kamiya, K. Shimizu, and F. Ohmoto, “Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis,” Cornea, vol. 28, no. 7, pp. 765–769, 2009.
[84]  K. Kamiya, K. Shimizu, and F. Ohmoto, “Time course of corneal biomechanical parameters after laser in situ keratomileusis,” Ophthalmic Research, vol. 42, no. 3, pp. 167–171, 2009.
[85]  S. Shah and M. Laiquzzaman, “Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser,” Contact Lens and Anterior Eye, vol. 32, no. 3, pp. 129–132, 2009.
[86]  S. Chen, D. Chen, J. Wang, F. Lu, Q. Wang, and J. Qu, “Changes in Ocular Response Analyzer parameters after LASIK,” Journal of Refractive Surgery, vol. 26, no. 4, pp. 279–288, 2010.
[87]  D. S. Ryan, C. D. Coe, R. S. Howard, J. D. Edwards, and K. S. Bower, “Corneal biomechanics following Epi-LASIK,” Journal of Refractive Surgery, vol. 27, no. 6, pp. 458–464, 2011.
[88]  D. Gatinel, S. Chaabouni, P.-A. Adam, J. Munck, M. Puech, and T. Hoang-Xuan, “Corneal hysteresis, resistance factor, topography, and pachymetry after corneal lamellar flap,” Journal of Refractive Surgery, vol. 23, no. 1, pp. 76–84, 2007.
[89]  F. Witzel de Medeiros, A. Sinha-Roy, M. Ruiz Alves, S. E. Wilson, and W. J. Dupps, “Differences in the early biomechanical effects of hyperopic and myopic laser in situ keratomileusis,” Journal of Cataract and Refractive Surgery, vol. 36, no. 6, pp. 947–953, 2010.
[90]  S. Kaushik, S. S. Pandav, A. Banger, K. Aggarwal, and A. Gupta, “Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma,” The American Journal of Ophthalmology, vol. 153, no. 5, pp. 840–849, 2012.
[91]  C. Kirwan, D. O'Malley, and M. O'Keefe, “Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert Ocular Response Analyzer,” Ophthalmologica, vol. 222, no. 5, pp. 334–337, 2008.
[92]  S. E. Avetisov, I. A. Novikov, I. A. Bubnova, A. A. Antonov, and V. I. Siplivyi, “Determination of corneal elasticity coefficient using the ORA database,” Journal of Refractive Surgery, vol. 26, no. 7, pp. 520–524, 2010.
[93]  G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” Journal of Cataract and Refractive Surgery, vol. 29, no. 9, pp. 1780–1785, 2003.
[94]  T. M. El-Raggal, “Riboflavin-ultraviolet A corneal cross-linking for keratoconus,” Middle East African Journal of Ophthalmology, vol. 16, no. 4, pp. 256–259, 2009.
[95]  M. Poli, P. L. Cornut, T. Balmitgere, F. Aptel, H. Janin, and C. Burillon, “Prospective study of corneal collagen cross-linking efficacy and tolerance in the treatment of keratoconus and Corneal ectasia: 3-year results,” Cornea, vol. 32, no. 5, pp. 583–590, 2013.
[96]  D. I. Bettis, M. Hsu, and M. Moshirfar, “Corneal collagen cross-linking for nonectatic disorders: a systematic review,” Journal of Refractive Surgery, vol. 28, no. 11, pp. 798–807, 2012.
[97]  P. Vinciguerra, E. Albè, A. M. Mahmoud, S. Trazza, F. Hafezi, and C. J. Roberts, “Intra- and postoperative variation in Ocular Response Analyzer parameters in keratoconic eyes after corneal cross-linking,” Journal of Refractive Surgery, vol. 26, no. 9, pp. 669–676, 2010.
[98]  R. Gutierrez, I. Lopez, C. Villa-Collar, and J. M. Gonzalez-Meijome, “Corneal transparency after cross-linking for keratoconus: 1-year follow-up,” Journal of Refractive Surgery, vol. 28, no. 11, pp. 781–786, 2012.
[99]  Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus? A pilot study,” Cornea, vol. 28, no. 5, pp. 498–502, 2009.
[100]  D. P. Pi?ero, J. L. Alio, M. A. Teus, R. I. Barraquer, and A. Uceda-Monta?és, “Modeling the intracorneal ring segment effect in keratoconus using refractive, Keratometric, and corneal aberrometric data,” Investigative Ophthalmology and Visual Science, vol. 51, no. 11, pp. 5583–5591, 2010.
[101]  D. P. Pi?ero, J. L. Alio, A. Uceda-Montanes, B. E. Kady, and I. Pascual, “Intracorneal ring segment implantation in corneas with post-laser in situ keratomileusis keratectasia,” Ophthalmology, vol. 116, no. 9, pp. 1665–1674, 2009.
[102]  S. Patel, J. Marshall, and F. W. Fitzke III, “Model for deriving the optical performance of the myopic eye corrected with an intracorneal ring,” Journal of Refractive Surgery, vol. 11, no. 4, pp. 248–252, 1995.
[103]  D. P. Pi?ero and J. L. Alio, “Intracorneal ring segments in ectatic corneal disease—a review,” Clinical and Experimental Ophthalmology, vol. 38, no. 2, pp. 154–167, 2010.
[104]  C. Dauwe, D. Touboul, C. J. Roberts et al., “Biomechanical and morphological corneal response to placement of intrastromal corneal ring segments for keratoconus,” Journal of Cataract and Refractive Surgery, vol. 35, no. 10, pp. 1761–1767, 2009.
[105]  E. Gorgun, R. B. Kucumen, and N. M. Yenerel, “Influence of intrastromal corneal ring segment implantation on corneal biomechanical parameters in keratoconic eyes,” Japanese Journal of Ophthalmology, vol. 55, no. 5, pp. 467–471, 2011.
[106]  J. L. Alio, D. P. Piero, and A. Daxer, “Clinical outcomes after complete ring implantation in corneal ectasia using the femtosecond technology: a pilot study,” Ophthalmology, vol. 118, no. 7, pp. 1282–1290, 2011.
[107]  J. M. Salgado-Borges, C. Costa-Ferreira, M. Monteiro et al., “Refractive, tomographic and biomechanical outcomes after implantation of ferrara ICRS in keratoconus patients,” International Journal of Keratoconus and Ectatic Corneal Diseases, vol. 1, no. 1, pp. 16–21, 2012.
[108]  D. P. Pi?ero, J. L. Alio, R. I. Barraquer, and R. Michael, “Corneal biomechanical changes after intracorneal ring segment implantation in Keratoconus,” Cornea, vol. 31, no. 5, pp. 491–499, 2012.
[109]  P. Pena-Garcia, A. Vega-Estrada, R. I. Barraquer, N. Burguera-Gimenez, and J. L. Alio, “Intracorneal ring segment in keratoconus: a model to predict visual changes induced by the surgery,” Investigative Ophthalmology & Visual Science, vol. 53, no. 13, pp. 8447–8457, 2012.
[110]  M. Mikielewicz, K. Kotliar, R. I. Barraquer, and R. Michael, “Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus,” The British Journal of Ophthalmology, vol. 95, no. 6, pp. 793–798, 2011.
[111]  R. Ambrosio, J. S. Borges, C. Costa-Ferreira et al., “Intrastromal corneal ring segments for keratoconus: results and correlation with preoperative corneal biomechanics,” The Brazilian Journal of Ophthalmology, vol. 71, no. 2, pp. 89–99, 2012.
[112]  N. M. Yenerel, R. B. Kucumen, and E. Gorgun, “Changes in corneal biomechanics in patients with keratoconus after penetrating keratoplasty,” Cornea, vol. 29, no. 11, pp. 1247–1251, 2010.
[113]  M. Laiquzzaman, K. Tambe, and S. Shah, “Comparison of biomechanical parameters in penetrating keratoplasty and normal eyes using the Ocular Response Analyser,” Clinical and Experimental Ophthalmology, vol. 38, no. 8, pp. 758–763, 2010.
[114]  M. Hosny, M. A. M. Hassaballa, and A. Shalaby, “Changes in corneal biomechanics following different keratoplasty techniques,” Clinical Ophthalmology, vol. 5, no. 1, pp. 767–770, 2011.
[115]  M. R. Jafarinasab, S. Feizi, M. A. Javadi, and A. Hashemloo, “Graft biomechanical properties after penetrating keratoplasty versus deep anterior lamellar keratoplasty,” Current Eye Research, vol. 36, no. 5, pp. 417–421, 2011.
[116]  S. Feizi, B. Einollahi, S. Yazdani, and A. Hashemloo, “Graft biomechanical properties after penetrating keratoplasty in keratoconus,” Cornea, vol. 31, no. 8, pp. 855–858, 2012.
[117]  J. F. Jordan, S. Joergens, S. Dinslage, T. S. Dietlein, and G. K. Krieglstein, “Central and paracentral corneal pachymetry in patients with normal tension glaucoma and ocular hypertension,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 2, pp. 177–182, 2006.
[118]  M. Pakravan, A. Parsa, M. Sanagou, and C. F. Parsa, “Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma,” The British Journal of Ophthalmology, vol. 91, no. 1, pp. 26–28, 2007.
[119]  M. R. Lesk, A. S. Hafez, and D. Descovich, “Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension,” Archives of Ophthalmology, vol. 124, no. 11, pp. 1568–1572, 2006.
[120]  F. Bochmann, G. S. Ang, and A. Azuara-Blanco, “Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON),” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 5, pp. 735–738, 2008.
[121]  T. Morita, N. Shoji, K. Kamiya, F. Fujimura, and K. Shimizu, “Corneal biomechanical properties in normal-tension glaucoma,” Acta Ophthalmologica, vol. 90, no. 1, pp. e48–e53, 2012.
[122]  N. G. Congdon, A. T. Broman, K. Bandeen-Roche, D. Grover, and H. A. Quigley, “Central corneal thickness and corneal hysteresis associated with glaucoma damage,” The American Journal of Ophthalmology, vol. 141, no. 5, pp. 868–875, 2006.
[123]  M. Sullivan-Mee, S. C. Billingsley, A. D. Patel, K. D. Halverson, B. R. Alldredge, and C. Qualls, “Ocular Response Analyzer in subjects with and without glaucoma,” Optometry and Vision Science, vol. 85, no. 6, pp. 463–470, 2008.
[124]  A. P. Wells, D. F. Garway-Heath, A. Poostchi, T. Wong, K. C. Y. Chan, and N. Sachdev, “Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients,” Investigative Ophthalmology and Visual Science, vol. 49, no. 8, pp. 3262–3268, 2008.
[125]  S. Shah, M. Laiquzzaman, S. Mantry, and I. Cunliffe, “Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension,” Clinical and Experimental Ophthalmology, vol. 36, no. 6, pp. 508–513, 2008.
[126]  L. Sun, M. Shen, J. Wang et al., “Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma,” The American Journal of Ophthalmology, vol. 147, no. 6, pp. 1061–1066, 2009.
[127]  G. Mangouritsas, G. Morphis, S. Mourtzoukos, and E. Feretis, “Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes,” Acta Ophthalmologica, vol. 87, no. 8, pp. 901–905, 2009.
[128]  C. F. Burgoyne, J. Crawford Downs, A. J. Bellezza, J.-K. Francis Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Progress in Retinal and Eye Research, vol. 24, no. 1, pp. 39–73, 2005.
[129]  G. S. Ang, F. Bochmann, J. Townend, and A. Azuara-Blanco, “Corneal biomechanical properties in primary open angle glaucoma and normal tension glaucoma,” Journal of Glaucoma, vol. 17, no. 4, pp. 259–262, 2008.
[130]  A. Anand, C. G. V. de Moraes, C. C. Teng, C. Tello, J. M. Liebmann, and R. Ritch, “Corneal hysteresis and visual field asymmetry in open angle glaucoma,” Investigative Ophthalmology and Visual Science, vol. 51, no. 12, pp. 6514–6518, 2010.
[131]  T. S. Prata, V. C. Lima, L. M. Guedes et al., “Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients,” Clinical & Experimental Ophthalmology, vol. 40, no. 7, pp. 682–688, 2012.
[132]  A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Survey of Ophthalmology, vol. 52, no. 6, supplement 2, pp. S109–S114, 2007.
[133]  K. M. Meek, S. J. Tuft, Y. Huang et al., “Changes in collagen orientation and distribution in keratoconus corneas,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 1948–1956, 2005.
[134]  V. Hurmeric, A. Sahin, G. Ozge, and A. Bayer, “The relationship between corneal biomechanical properties and confocal microscopy findings in normal and keratoconic eyes,” Cornea, vol. 29, no. 6, pp. 641–649, 2010.
[135]  M. C. Mocan, P. T. Yilmaz, M. Irkec, and M. Orhan, “In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus,” Current Eye Research, vol. 33, no. 11-12, pp. 933–939, 2008.
[136]  B. M. Fontes, R. Ambrósio Jr., D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology, vol. 117, no. 4, pp. 673–679, 2010.
[137]  A. Saad, Y. Lteif, E. Azan, and D. Gatinel, “Biomechanical properties of keratoconus suspect eyes,” Investigative Ophthalmology and Visual Science, vol. 51, no. 6, pp. 2912–2916, 2010.
[138]  B. M. Fontes, R. Ambrósio Jr., G. C. Velarde, and W. Nosé, “Ocular Response Analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” Journal of Refractive Surgery, vol. 27, no. 3, pp. 209–215, 2011.
[139]  E. J. Cohen and J. S. Myers, “Keratoconus and normal-tension glaucoma: a study of the possible association with abnormal biomechanical properties as measured by corneal hysteresis,” Cornea, vol. 29, no. 9, pp. 955–970, 2010.
[140]  D. P. Pi?ero, J. L. Alio, R. I. Barraquer, R. Michael, and R. Jiménez, “Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study,” Investigative Ophthalmology and Visual Science, vol. 51, no. 4, pp. 1948–1955, 2010.
[141]  R. D. Johnson, M. T. Nguyen, N. Lee, and D. R. Hamilton, “Corneal biomechanical properties in normal, forme fruste keratoconus, and manifest keratoconus after statistical correction for potentially confounding factors,” Cornea, vol. 30, no. 5, pp. 516–523, 2011.
[142]  J. G. Galletti, T. Pf?rtner, and F. F. Bonthoux, “Improved keratoconus detection by Ocular Response Analyzer testing after consideration of corneal thickness as a confounding factor,” Journal of Refractive Surgery, vol. 28, no. 3, pp. 202–208, 2012.
[143]  R. Ambekar, K. C. Toussaint, and A. Wagoner Johnson, “The effect of keratoconus on the structural, mechanical, and optical properties of the cornea,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 3, pp. 223–236, 2011.
[144]  B. M. Fontes, R. A. Junior, D. Jardim, G. C. Velarde, and W. Nosé, “Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas,” Arquivos Brasileiros de Oftalmologia, vol. 73, no. 4, pp. 333–337, 2010.
[145]  C. Schweitzer, C. J. Roberts, A. M. Mahmoud, J. Colin, S. Maurice-Tison, and J. Kerautret, “Screening of forme fruste keratoconus with the Ocular Response Analyzer,” Investigative Ophthalmology and Visual Science, vol. 51, no. 5, pp. 2403–2410, 2010.
[146]  J. S. Wolffsohn, S. Safeen, S. Shah, and M. Laiquzzaman, “Changes of corneal biomechanics with keratoconus,” Cornea, vol. 31, no. 8, pp. 849–854, 2012.
[147]  A. P. Adamis, V. Filatov, B. J. Tripathi, and R. C. Tripathi, “Fuchs' endothelial dystrophy of the cornea,” Survey of Ophthalmology, vol. 38, no. 2, pp. 149–168, 1993.
[148]  K. Clemmensen and J. Hjortdal, “Intraocular pressure and corneal biomechanics in Fuchs' endothelial dystrophy and after posterior lamellar keratoplasty,” Acta Ophthalmologica, 2013.
[149]  N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of chronic diabetes mellitus on the thickness and the shape of the anterior and posterior surface of the cornea,” Cornea, vol. 26, no. 10, pp. 1165–1170, 2007.
[150]  R. R. Sudhir, R. Raman, and T. Sharma, “Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, sankara nethralaya diabetic retinopathy and molecular genetics study (SN-DREAMS, report 23),” Cornea, vol. 31, no. 10, pp. 1119–1122, 2012.
[151]  A. Kotecha, F. Oddone, C. Sinapis et al., “Corneal biomechanical characteristics in patients with diabetes mellitus,” Journal of Cataract and Refractive Surgery, vol. 36, no. 11, pp. 1822–1828, 2010.
[152]  A. Scheler, E. Spoerl, and A. G. Boehm, “Effect of diabetes mellitus on corneal biomechanics and measurement of intraocular pressure,” Acta Ophthalmologica, vol. 90, no. 6, pp. e447–e451, 2012.
[153]  D. P. E. Castro, T. S. Prata, V. C. Lima, L. G. Biteli, C. G. V. de Moraes, and A. Paranhos, “Corneal viscoelasticity differences between diabetic and nondiabetic glaucomatous patients,” Journal of Glaucoma, vol. 19, no. 5, pp. 341–343, 2010.
[154]  Y. Goldich, Y. Barkana, Y. Gerber et al., “Effect of diabetes mellitus on biomechanical parameters of the cornea,” Journal of Cataract and Refractive Surgery, vol. 35, no. 4, pp. 715–719, 2009.
[155]  A. Hager, K. Wegscheider, and W. Wiegand, “Changes of extracellular matrix of the cornea in diabetes mellitus,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 10, pp. 1369–1374, 2009.
[156]  A. ?ahin, A. Bayer, G. ?zge, and T. Mumcuo?lu, “Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements,” Investigative Ophthalmology and Visual Science, vol. 50, no. 10, pp. 4597–4604, 2009.
[157]  R. J. Ambrósio Jr., D. L. Caldas, I. C. Ramos, R. T. Santos, L. N. Pimentel, and C. J. Roberts, “Corneal biomechanical assessment using dynamic ultra high-speed Scheimpflug technology noncontact tonometry (UHS-ST NCT): preliminary results,” in Proceedings of the American Society of Cataract and Refractive Surgery, the American Society of Ophthalmic Administrators (ASCRS-ASOA '11), San Diego, Calif, USA, March 2011.
[158]  R. Ambrósio Jr., L. P. Nogueira, D. L. Caldas et al., “Evaluation of corneal shape and biomechanics before LASIK,” International Ophthalmology Clinics, vol. 51, no. 2, pp. 11–38, 2011.
[159]  J. Hong, J. Xu, A. Wei et al., “A new tonometer—the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers,” Investigative Ophthalmology and Visual Science, vol. 54, no. 1, pp. 659–665, 2013.
[160]  Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optometry and Vision Science, vol. 90, no. 1, pp. e1–e8, 2013.
[161]  C. K. Leung, C. Ye, and R. N. Weinreb, “An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement,” Investigative Ophthalmology and Visual Science, vol. 54, no. 4, pp. 2885–2892, 2013.
[162]  J. A. Bonatti, S. J. Bechara, P. C. Carricondo, and N. Kara-José, “Proposal for a new approach to corneal biomechanics: dynamic corneal topography,” Arquivos Brasileiros de Oftalmologia, vol. 72, no. 2, pp. 264–267, 2009.
[163]  C. Roberts, J. Marous, and A. Mahmoud, “Dynamic corneal surface topography: in vivo measurement of biomechanical properties,” in Proceedings of the Oral Communication in 19th Biennial Meeting of the International Society for Eye Research, Montreal, Canada, 2010.
[164]  D. H. Glass, C. J. Roberts, A. S. Litsky, and P. A. Weber, “A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 3919–3926, 2008.
[165]  D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Optics Express, vol. 19, no. 15, pp. 14188–14199, 2011.
[166]  G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Investigative Ophthalmology and Visual Science, vol. 53, no. 1, pp. 185–190, 2012.
[167]  W. J. Dupps Jr., M. V. Netto, S. Herekar, and R. R. Krueger, “Surface wave elastometry of the cornea in porcine and human donor eyes,” Journal of Refractive Surgery, vol. 23, no. 1, pp. 66–75, 2007.
[168]  J. Liu, X. He, X. Pan, and C. J. Roberts, “Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms,” Journal of Biomechanics, vol. 40, no. 5, pp. 1177–1182, 2007.
[169]  X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Investigative Ophthalmology and Visual Science, vol. 50, no. 11, pp. 5148–5154, 2009.
[170]  T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, “Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity,” IEEE Transactions on Medical Imaging, vol. 28, no. 3, pp. 313–322, 2009.
[171]  M. Tanter, J. Bercoff, A. Athanasiou et al., “Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging,” Ultrasound in Medicine and Biology, vol. 34, no. 9, pp. 1373–1386, 2008.
[172]  M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Medical Imaging, vol. 28, no. 12, pp. 1881–1893, 2009.
[173]  J. L. Calkins, B. F. Hochheimer, and W. J. Stark, “Corneal wound healing: holographic stress-test analysis,” Investigative Ophthalmology and Visual Science, vol. 21, no. 2, pp. 322–334, 1981.
[174]  P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” Journal of Cataract and Refractive Surgery, vol. 31, no. 1, pp. 175–184, 2005.
[175]  N. E. K. Cartwright, J. R. Tyrer, and J. Marshall, “In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry,” Journal of Refractive Surgery, vol. 28, no. 7, pp. 503–508, 2012.
[176]  G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” Journal of Cataract and Refractive Surgery, vol. 31, no. 1, pp. 163–174, 2005.
[177]  M. R. Ford, W. J. Dupps Jr., A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” Journal of Biomedical Optics, vol. 16, no. 1, Article ID 016005, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133