全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changing Trends of Imaging in Angle Closure Evaluation

DOI: 10.5402/2012/597124

Full-Text   Cite this paper   Add to My Lib

Abstract:

Primary angle closure glaucoma (PACG) is a significant cause of visual disability worldwide. It predominantly affects the Eastern and South Asian population of the world. Early detection of anatomically narrow angles is important, and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). Gonioscopy has given way to modern day imaging technologies such as ultrasound biomicroscopy (UBM) and more recently, anterior segment optical coherence tomography (AS-OCT). Ultrasound biomicroscopy provides objective, high-resolution images of anterior segment anatomy, including the cornea, iris, anterior chamber, anterior chamber angle, and ciliary body. Optical coherence tomography (OCT) is a noncontact optical signal acquisition and processing device that provides magnified, high-resolution cross-sectional images of ocular tissues. Recent technological advances towards three-dimensional visualization broadened the scope of AS-OCT in ophthalmologic evaluation. Optical coherence tomography systems use low-coherence, near-infrared light to provide detailed images of anterior segment structures at resolutions exceeding that of UBM. This paper summarizes the clinical application of UBM and OCT for assessment of anterior segment in glaucoma. 1. Introduction Primary angle closure glaucoma (PACG) is a leading cause of blindness worldwide [1]. It is potentially preventable if diagnosed early in the course of the disease, before irreversible damage has occurred to the optic nerve or trabecular meshwork (TM). Primary angle closure glaucoma comprises about 10% of glaucoma patients in the USA, and its prevalence varies amongst ethnic and racial groups [2]. Narrow angles are found in about 2% of Caucasians, with 0.1% having acute angle closure glaucoma [3–5]. The ethnic group in which PACG is most common is Eskimos [6]. Angle-closure is less common in blacks but more likely to develop chronic ACG when they do develop the disease [7–9]. Asians are prone to chronic angle-closure and often do not reach clinical attention until severe ocular damage has already occurred. In Asians, specifically, the incidence of angle-closure glaucoma outnumbers open-angle glaucoma [10]. In all racial and ethnic populations, ACG is found 3-4 times more often in females than males [11]. Finally, ACG is most prevalent in hyperopic and elderly patients, peaking between ages 55 and 70, since the anterior chamber depth and volume decrease with age due to nuclear sclerosis and in patients with a family history of angle-closure glaucoma

References

[1]  H. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” British Journal of Ophthalmology, vol. 90, no. 3, pp. 262–267, 2006.
[2]  American Academy of Ophthalmology, Primary Angle Closure, Preferred Practice Pattern, American Academy of Ophthalmology, San Francisco, Calif, USA, 2005.
[3]  L. Dandona, R. Dandona, P. Mandal et al., “Angle-closure glaucoma in an urban population in Southern India: the andhra pradesh eye disease study,” Ophthalmology, vol. 107, no. 9, pp. 1710–1716, 2000.
[4]  A. Jacob, R. Thomas, S. P. Koshi, A. Braganza, and J. Muliyil, “Prevalence of primary glaucoma in an urban South Indian population,” Indian Journal of Ophthalmology, vol. 46, no. 2, pp. 81–86, 1998.
[5]  P. J. Foster and G. J. Johnson, “Glaucoma in china: how big is the problem?” British Journal of Ophthalmology, vol. 85, no. 11, pp. 1277–1282, 2001.
[6]  G. H. M. B. van Rens, S. M. Arkell, W. Charlton, and W. Doesburg, “Primary angle-closure glaucoma among Alaskan Eskimos,” Documenta Ophthalmologica, vol. 70, no. 2-3, pp. 265–276, 1988.
[7]  V. Clemmesen and M. H. Luntz, “Lens thickness and angle closure glaucoma: a comparative oculometric study in South African Negroes and Danes,” Acta Ophthalmologica, vol. 54, no. 2, pp. 193–197, 1976.
[8]  J. T. Wilensky, N. Gandhi, and T. Pan, “Racial influences in open-angle glaucoma,” Annals of Ophthalmology, vol. 10, no. 10, pp. 1398–1402, 1978.
[9]  J. F. Salmon, “Presenting features of primary angle-closure glaucoma in patients of mixed ethnic background,” South African Medical Journal, vol. 83, no. 8, pp. 594–597, 1993.
[10]  Y. Liang, D. S. Friedman, Q. Zhou et al., “Prevalence and characteristics of primary angle-closure diseases in a rural adult Chinese population: the handan eye study,” Investigative Ophthalmology & Visual Science, vol. 52, no. 12, pp. 8672–8679, 2011.
[11]  N. G. Congdon and D. S. Friedman, “Angle-closure glaucoma: impact, etiology, diagnosis, and treatment,” Current Opinion in Ophthalmology, vol. 14, no. 2, pp. 70–73, 2003.
[12]  P. J. Foster, F. T. S. Oen, D. Machin et al., “The prevalence of glaucoma in chinese residents of singapore: a cross-sectional population survey of the tanjong pagar district,” Archives of Ophthalmology, vol. 118, no. 8, pp. 1105–1111, 2000.
[13]  C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology, vol. 98, no. 3, pp. 287–295, 1991.
[14]  C. J. Pavlin, M. D. Sherar, and F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology, vol. 97, no. 2, pp. 244–250, 1990.
[15]  R. Ritch and J. M. Liebmann, “Role of ultrasound biomicroscopy in the differentiation of block glaucomas,” Current Opinion in Ophthalmology, vol. 9, no. 2, pp. 39–45, 1998.
[16]  S. Kaushik, R. Jain, S. Pandav, and A. Gupta, “Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy,” Indian Journal of Ophthalmology, vol. 54, no. 3, pp. 159–163, 2006.
[17]  Y. Barkana, S. K. Dorairaj, Y. Gerber, J. M. Liebmann, and R. Ritch, “Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition,” Archives of Ophthalmology, vol. 125, no. 10, pp. 1331–1335, 2007.
[18]  A. Narayanaswamy, L. Vijaya, B. Shantha, M. Baskaran, A. V. Sathidevi, and S. Baluswamy, “Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy,” Japanese Journal of Ophthalmology, vol. 48, no. 1, pp. 44–49, 2004.
[19]  P. Mora, C. Sangermani, S. Ghirardini, A. Carta, N. Ungaro, and S. A. Gandolfi, “Ultrasound biomicroscopy and iris pigment dispersion: a case-control study,” British Journal of Ophthalmology, vol. 94, no. 4, pp. 428–432, 2010.
[20]  Z. Sbeity, S. K. Dorairaj, S. Reddy, C. Tello, J. M. Liebmann, and R. Ritch, “Ultrasound biomicroscopy of zonular anatomy in clinically unilateral exfoliation syndrome,” Acta Ophthalmologica, vol. 86, no. 5, pp. 565–568, 2008.
[21]  C. J. Pavlin, K. Harasiewicz, and F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” American Journal of Ophthalmology, vol. 113, no. 4, pp. 381–389, 1992.
[22]  R. Ursea and R. H. Silverman, “Anterior segment imaging for assessment of glaucoma,” Expert Review Of Ophthalmology, vol. 5, no. 1, pp. 59–74, 2010.
[23]  T. Dada, R. Gadia, A. Sharma et al., “Ultrasound Biomicroscopy in Glaucoma,” Survey of Ophthalmology, vol. 56, no. 5, pp. 433–450, 2011.
[24]  D. Quek, M. Nongpiur, S. Perera, and T. Aung, “Angle imaging: advances and challenges,” Indian Journal of Ophthalmology, vol. 59, no. 1, pp. S69–S75, 2011.
[25]  C. K. Leung, H. Li, R. N. Weinreb et al., “Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and VisanteOCT,” Investigative Ophthalmology & Visual Science, vol. 49, no. 8, pp. 3469–3474, 2008.
[26]  T. S. Prata, S. Dorairaj, C. G. V. De Moraes, C. Tello, J. M. Liebmann, and R. Ritch, “Indentation slitlamp-adapted optical coherence tomography technique for anterior chamber angle assessment,” Archives of Ophthalmology, vol. 128, no. 5, pp. 646–647, 2010.
[27]  S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Archives of Ophthalmology, vol. 126, no. 6, pp. 765–771, 2008.
[28]  C. J. Pavlin and F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmologica. Supplementum, no. 204, pp. 7–9, 1992.
[29]  C. Wirbelauer, A. Karandish, H. H?berle, and T. P. Duy, “Noncontact goniometry with optical coherence tomography,” Archives of Ophthalmology, vol. 123, no. 2, pp. 179–185, 2005.
[30]  L. M. Sakata, R. Lavanya, D. S. Friedman et al., “Assessment of the scleral spur in anterior segment optical coherence tomography images,” Archives of Ophthalmology, vol. 126, no. 2, pp. 181–185, 2008.
[31]  H. Ishikawa, J. M. Liebmann, and R. Ritch, “Quantitative assessment of the anterior segment using ultrasound biomicroscopy,” Current Opinion in Ophthalmology, vol. 11, no. 2, pp. 133–139, 2000.
[32]  S. F. Urbak, “Ultrasound biomicroscopy. I. Precision of measurements,” Acta Ophthalmologica Scandinavica, vol. 76, no. 4, pp. 447–455, 1998.
[33]  C. K. S. Leung, D. W. F. Yick, Y. Y. Y. Kwong et al., “Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography,” British Journal of Ophthalmology, vol. 91, no. 3, pp. 340–344, 2007.
[34]  M. Müller, G. Dahmen, E. P?rksen et al., “Anterior chamber angle measurement with optical coherence tomography: intraobserver andinterobserver variability,” Journal of Cataract and Refractive Surgery, vol. 32, no. 11, pp. 1803–1808, 2006.
[35]  T. Dada, R. Sihota, R. Gadia, A. Aggarwal, S. Mandal, and V. Gupta, “Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment,” Journal of Cataract and Refractive Surgery, vol. 33, no. 5, pp. 837–840, 2007.
[36]  S. Dorairaj, J. M. Liebmann, and R. Ritch, “Quantitative evaluation of anterior segment parameters in the era of imaging,” Transactions of the American Ophthalmological Society, vol. 105, pp. 99–108, 2007, discussion 108–110.
[37]  S. Ulaganathan, S. B. Ganeshrao, M. Baskaran, S. Srinivasan, B. Shantha, and L. Vijaya, “Plateau Iris configuration and dark-light changes in anterior segment optical coherence tomography,” Ophthalmic Surg Lasers Imaging, vol. 41, pp. e1–e4, 2010.
[38]  T. Jing, P. Marziliano, and H. T. Wong, “Automatic detection of Schwalbe's line in the anterior chamber angle of the eye using HD-OCT images.,” Conference Proceedings: IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 3013–3016, 2010.
[39]  G. S. Ang and A. P. Wells, “Factors influencing laser peripheral iridotomy outcomes in white eyes: an anterior segment optical coherence tomography study,” Journal of Glaucoma, vol. 20, no. 9, pp. 577–583, 2011.
[40]  K. S. Lee, K. R. Sung, S. Y. Kang, J. W. Cho, D. Y. Kim, and M. S. Kook, “Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study,” Japanese Journal of Ophthalmology, vol. 55, no. 3, pp. 213–219, 2011.
[41]  K. Lei, N. Wang, L. Wang, and B. Wang, “Morphological changes of the anterior segment after laser peripheral iridotomy in primary angle closure,” Eye, vol. 23, no. 2, pp. 345–350, 2009.
[42]  C. Parc, J. Laloum, and O. Bergès, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of plateau iris,” Journal Francais d'Ophtalmologie, vol. 33, no. 4, pp. 266–e1, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133