全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

The Biology of Ewing Sarcoma

DOI: 10.1155/2013/759725

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. The goal of this study was to review the current literature on the biology of Ewing's sarcoma, including current treatments and the means by which an understanding of biological mechanisms could impact future treatments. Methods. A search of PubMed and The Cochrane Collaboration was performed. Both preclinical and clinical evidence was considered, but specific case reports were not. Primary research articles and reviews were analyzed with an emphasis on recent publications. Results. Ewing sarcoma is associated with specific chromosomal translocations and the resulting transcripts/proteins. Knowledge of the biology of Ewing sarcoma has been growing but has yet to significantly impact or produce new treatments. Localized cases have seen improvements in survival rates, but the same cannot be said of metastatic and recurrent cases. Standard surgical, radiation, and chemotherapy treatments are reaching their efficacy limits. Conclusion. Improving prognosis likely lies in advancing biomarkers and early diagnosis, determining a cell(s) of origin, and developing effective molecular therapeutics and antiangiogenic agents. Preclinical evidence suggests the utility of molecular therapies for Ewing sarcoma. Early clinical results also reveal potential for novel treatments but require further development and evaluation before widespread use can be advocated. 1. Introduction Ewing’s sarcoma family tumors (ESFT) include Ewing’s sarcoma (ES), peripheral primitive neuroectodermal tumors (PNET), and Askin tumors. These tumors are undifferentiated small blue round cell tumors that mainly appear in bone and less frequently in soft tissues [1, 2]. While these tumors are rare, accounting for less than 10% of all human malignancies, they are of the most aggressive and often occur in the long bones and pelvis where they can quickly metastasize to the bone marrow, lung, and other tissues [3, 4]. ES is the second most common bone cancer, most often occurring in Caucasian children, adolescents, and young adults, and is considered a high-grade malignancy [5–8]. Originally, it was thought that ES was derived from primitive neuroectodermal cells; however, there is much debate over the origin of ES. In this regard, endothelial, mesodermal, epithelial, neural, and mesenchymal cells have all been hypothesized as an origin, but there is substantial research indicating that mesenchymal stem cells (MSC) may be the original progenitor of Ewing tumor proliferation [9], and Ewing tumors most often harbor nonrandom balanced chromosomal translocations of the EWS gene on chromosome

References

[1]  J. L. Ordó?ez, D. Osuna, D. Herrero, E. de álava, and J. Madoz-Gúrpide, “Advances in Ewing's sarcoma research: where are we now and what lies ahead?” Cancer Research, vol. 69, no. 18, pp. 7140–7150, 2009.
[2]  M. Kauer, J. Ban, R. Kofler et al., “A molecular function map of Ewing's sarcoma,” PLoS ONE, vol. 4, no. 4, Article ID e5415, 2009.
[3]  P. P. Lin, Y. Wang, and G. Lozano, “Mesenchymal stem cells and the origin of Ewing's sarcoma,” Sarcoma, vol. 2011, Article ID 276463, 8 pages, 2011.
[4]  N. Riggi and I. Stamenkovic, “The biology of Ewing sarcoma,” Cancer Letters, vol. 254, no. 1, pp. 1–10, 2007.
[5]  C. Rodriguez-Galindo, S. L. Spunt, and A. S. Pappo, “Treatment of Ewing sarcoma family of tumors: current status and outlook for the future,” Medical and Pediatric Oncology, vol. 40, no. 5, pp. 276–287, 2003.
[6]  V. T. DeVita, T. S. Lawrence, S. A. Rosenberg, R. A. DePinho, and R. A. Weinberg, Eds., DeVita, Hellman, and Rosenberg's Cancer. Principles & Practice of Oncology.
[7]  N. Esiashvili, M. Goodman, and R. B. Marcus Jr., “Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: surveillance epidemiology and end results data,” Journal of Pediatric Hematology/Oncology, vol. 30, no. 6, pp. 425–430, 2008.
[8]  B. A. Teicher, R. G. Bagley, C. Rouleau, A. Kruger, Y. Ren, and L. Kurtzberg, “Characteristics of human Ewing/PNET sarcoma models,” Annals of Saudi Medicine, vol. 31, no. 2, pp. 174–182, 2011.
[9]  F. Tirode, K. Laud-Duval, A. Prieur, B. Delorme, P. Charbord, and O. Delattre, “Mesenchymal stem cell features of Ewing tumors,” Cancer Cell, vol. 11, no. 5, pp. 421–429, 2007.
[10]  J. R. Downing, D. R. Head, D. M. Parham et al., “Detection of the (11;22)(q24;q12) translocation of Ewing's sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction,” American Journal of Pathology, vol. 143, no. 5, pp. 1294–1300, 1993.
[11]  G. Maire, C. W. Brown, J. Bayani et al., “Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversion-insertion mechanism of EWS-ERG fusion gene formation: a case analysis and literature review,” Cancer Genetics and Cytogenetics, vol. 181, no. 2, pp. 81–92, 2008.
[12]  A. Arvand and C. T. Denny, “Biology of EWS/ETS fusions in Ewing's family tumors,” Oncogene, vol. 20, no. 40, pp. 5747–5754, 2001.
[13]  R. A. Bailly, R. Bosselut, J. Zucman et al., “DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma,” Molecular and Cellular Biology, vol. 14, no. 5, pp. 3230–3241, 1994.
[14]  A. D. Sharrocks, “The ETS-domain transcription factor family,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 827–837, 2001.
[15]  F. C. Kelleher and D. M. Thomas, “Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours,” Clinical Sarcoma Research, vol. 2, no. 1, article 6, 2012.
[16]  H. Kovar, D. Aryee, and A. Zoubek, “The Ewing family of tumors and the search for the Achilles' heel,” Current Opinion in Oncology, vol. 11, no. 4, pp. 275–284, 1999.
[17]  E. de Alava, A. Kawai, J. H. Healey, et al., “EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma,” Journal of Clinical Oncology, vol. 16, no. 4, pp. 1248–1255, 1998.
[18]  E. C. Toomey, J. D. Schiffman, and S. L. Lessnick, “Recent advances in the molecular pathogenesis of Ewing's sarcoma,” Oncogene, vol. 29, no. 32, pp. 4504–4516, 2010.
[19]  A. Uren and J. A. Toretsky, “Ewing's sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent,” Future Oncology, vol. 1, no. 4, pp. 521–528, 2005.
[20]  S. Kim, C. T. Denny, and R. Wisdom, “Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins,” Molecular and Cellular Biology, vol. 26, no. 7, pp. 2467–2478, 2006.
[21]  L. Cironi, N. Riggi, P. Provero et al., “IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells,” PLoS ONE, vol. 3, no. 7, Article ID e2634, 2008.
[22]  M. R. Sollazzo, M. S. Benassi, G. Magagnoli et al., “Increased c-myc oncogene expression in Ewing's sarcoma: correlation with Ki67 proliferation index,” Tumori, vol. 85, no. 3, pp. 167–173, 1999.
[23]  D. Herrero-Martín, D. Osuna, J. L. Ordó?ez, et al., “Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target,” British Journal of Cancer, vol. 101, no. 1, pp. 80–90, 2009.
[24]  R. Smith, L. A. Owen, D. J. Trem et al., “Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma,” Cancer Cell, vol. 9, no. 5, pp. 405–416, 2006.
[25]  M. Fukuma, H. Okita, J.-I. Hata, and A. Umezawa, “Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma,” Oncogene, vol. 22, no. 1, pp. 1–9, 2003.
[26]  E. García-Aragoncillo, J. Carrillo, E. Lalli et al., “DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells,” Oncogene, vol. 27, no. 46, pp. 6034–6043, 2008.
[27]  J. P. Zwerner, J. Joo, K. L. Warner et al., “The EWS/FLI1 oncogenic transcription factor deregulates GLI1,” Oncogene, vol. 27, no. 23, pp. 3282–3291, 2008.
[28]  G. H. S. Richter, S. Plehm, A. Fasan et al., “EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5324–5329, 2009.
[29]  C. Siligan, J. Ban, R. Bachmaier et al., “EWS-FLI1 target genes recovered from Ewing's sarcoma chromatin,” Oncogene, vol. 24, no. 15, pp. 2512–2524, 2005.
[30]  R. Kikuchi, M. Murakami, S. Sobue et al., “Ewing's sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of promoter,” Oncogene, vol. 26, no. 12, pp. 1802–1810, 2007.
[31]  K.-B. Hahm, K. Cho, C. Lee et al., “Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein,” Nature Genetics, vol. 23, no. 2, pp. 222–227, 1999.
[32]  F. Nakatani, K. Tanaka, R. Sakimura et al., “Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein,” The Journal of Biological Chemistry, vol. 278, no. 17, pp. 15105–15115, 2003.
[33]  L. Dauphinot, C. de Oliveira, T. Melot et al., “Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2 and c-Myc expression,” Oncogene, vol. 20, no. 25, pp. 3258–3265, 2001.
[34]  A. Prieur, F. Tirode, P. Cohen, and O. Delattre, “EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7275–7283, 2004.
[35]  N. Riggi, M.-L. Suvà, C. de Vito et al., “EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells,” Genes and Development, vol. 24, no. 9, pp. 916–932, 2010.
[36]  H. Ichikawa, K. Shimizu, Y. Hayashi, and M. Ohki, “An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation,” Cancer Research, vol. 54, no. 11, pp. 2865–2868, 1994.
[37]  D. Herrero-Martin, A. Fourtouna, S. Niedan, L. T. Riedmann, R. Schwentner, and D. N. T. Aryee, “Factors affecting EWS-FLI1 activity in Ewing's sarcoma,” Sarcoma, vol. 2011, Article ID 352580, 11 pages, 2011.
[38]  A. O. Cavazzana, J. S. Miser, J. Jefferson, and T. J. Triche, “Experimental evidence for a neural origin of Ewing's sarcoma of bone,” American Journal of Pathology, vol. 127, no. 3, pp. 507–518, 1987.
[39]  C.-H. Suh, N. G. Ordó?ez, J. Hicks, and B. Mackay, “Ultrastructure of the Ewing's sarcoma family of tumors,” Ultrastructural Pathology, vol. 26, no. 2, pp. 67–76, 2002.
[40]  S. L. Lessnick, C. S. Dacwag, and T. R. Golub, “The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts,” Cancer Cell, vol. 1, no. 4, pp. 393–401, 2002.
[41]  C. J. Rorie, V. D. Thomas, P. Chen, H. H. Pierce, J. P. O'Bryan, and B. E. Weissman, “The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors,” Cancer Research, vol. 64, no. 4, pp. 1266–1277, 2004.
[42]  S. Hu-Lieskovan, J. Zhang, L. Wu, H. Shimada, D. E. Schofield, and T. J. Triche, “EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors,” Cancer Research, vol. 65, no. 11, pp. 4633–4644, 2005.
[43]  M. A. Teitell, A. D. Thompson, P. H. B. Sorensen, H. Shimada, T. J. Triche, and C. T. Denny, “EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts,” Laboratory Investigation, vol. 79, no. 12, pp. 1535–1543, 1999.
[44]  Y. Castillero-Trejo, S. Eliazer, L. Xiang, J. A. Richardson, and R. L. Ilaria Jr., “Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors,” Cancer Research, vol. 65, no. 19, pp. 8698–8705, 2005.
[45]  N. Riggi, L. Cironi, P. Provero et al., “Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells,” Cancer Research, vol. 65, no. 24, pp. 11459–11468, 2005.
[46]  E. C. Torchia, S. Jaishankar, and S. J. Baker, “Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells,” Cancer Research, vol. 63, no. 13, pp. 3464–3468, 2003.
[47]  N. Riggi, M.-L. Suvà, D. Suvà, et al., “EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells,” Cancer Research, vol. 68, no. 7, pp. 2176–2185, 2008.
[48]  N. Riggi, M.-L. Suvà, and I. Stamenkovic, “Ewing's sarcoma origin: from duel to duality,” Expert Review of Anticancer Therapy, vol. 9, no. 8, pp. 1025–1030, 2009.
[49]  C. von Levetzow, X. Jiang, Y. Gwye et al., “Modeling initiation of Ewing sarcoma in human neural crest cells,” PLoS ONE, vol. 6, no. 4, Article ID e19305, 2011.
[50]  B. Widhe and T. Widhe, “Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma,” Journal of Bone and Joint Surgery A, vol. 82, no. 5, pp. 667–674, 2000.
[51]  O. Sneppen and L. M. Hansen, “Presenting symptoms and treatment delay in osteosarcoma and Ewing's sarcoma,” Acra Radiologica Oncology, vol. 23, no. 2-3, pp. 159–162, 1984.
[52]  Y. Iwamoto, “Diagnosis and treatment of Ewing's sarcoma,” Japanese Journal of Clinical Oncology, vol. 37, no. 2, pp. 79–89, 2007.
[53]  M. Bernstein, H. Kovar, M. Paulussen et al., “Ewing's sarcoma family of tumors: current management,” The Oncologist, vol. 11, no. 5, pp. 503–519, 2006.
[54]  C. B. Henk, S. Grampp, P. Wiesbauer et al., “Ewing sarcoma. Diagnostic imaging,” Der Radiologe, vol. 38, no. 6, pp. 509–522, 1998.
[55]  H. J. Van Der Woude, J. L. Bloem, and P. C. W. Hogendoorn, “Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing's sarcoma: review of current imaging modalities,” Skeletal Radiology, vol. 27, no. 2, pp. 57–71, 1998.
[56]  National Cancer Institute: PDQ Ewing Sarcoma Family of Tumors Treatment. Bethesda, Md, USA, National Cancer Institute, 2012, http://cancer.gov/cancertopics/pdq/treatment/ewings/HealthProfessional.
[57]  A. Schuck, S. Ahrens, M. Paulussen et al., “Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials,” International Journal of Radiation Oncology, Biology and Physics, vol. 55, no. 1, pp. 168–177, 2003.
[58]  S. L. Sailer, D. C. Harmon, H. J. Mankin, J. T. Truman, and H. D. Suit, “Ewing's sarcoma: surgical resection as a prognostic factor,” International Journal of Radiation Oncology, Biology and Physics, vol. 15, no. 1, pp. 43–52, 1988.
[59]  G. Bacci, S. Ferrari, F. Bertoni, et al., “Prognostic factors in nonmetastatic Ewin's srcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Intituto Orthopedico Rizzoli,” Journal of Clinical Oncology, vol. 18, no. 1, pp. 4–11, 2000.
[60]  W. F. Enneking, Musculoskeletal Tumor Surgery, Churchill Levingstone, New York, NY, USA, 1983.
[61]  A. Schuck, J. Hofmann, C. Rübe et al., “Radiotherapy in Ewing's sarcoma and PNET of the chest wall: results of the trials CESS 81, CESS 86 and EICESS 92,” International Journal of Radiation Oncology, Biology and Physics, vol. 42, no. 5, pp. 1001–1006, 1998.
[62]  V. Subbiah, P. Anderson, A. J. Lazar, E. Burdett, K. Raymond, and J. A. Ludwig, “Ewing's sarcoma: standard and experimental treatment options,” Current Treatment Options in Oncology, vol. 10, no. 1-2, pp. 126–140, 2009.
[63]  M. M. Thacker, H. T. Temple, and S. P. Scully, “Current treatment for Ewing's sarcoma,” Expert Review of Anticancer Therapy, vol. 5, no. 2, pp. 319–331, 2005.
[64]  M. Paulussen, S. Ahrens, S. Burdach et al., “Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies,” Annals of Oncology, vol. 9, no. 3, pp. 275–281, 1998.
[65]  S. J. Cotterill, S. Ahrens, M. Paulussen, et al., “Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group,” Journal of Clinical Oncology, vol. 18, no. 17, pp. 3108–3114, 2000.
[66]  J. S. Miser, R. E. Goldsby, Z. Chen et al., “Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children's Oncology Group,” Pediatric Blood and Cancer, vol. 49, no. 7, pp. 894–900, 2007.
[67]  P. A. Meyers, M. D. Krailo, M. Ladanyi et al., “High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis,” Journal of Clinical Oncology, vol. 19, no. 11, pp. 2812–2820, 2001.
[68]  H. Jurgens, U. Exner, H. Gadner et al., “Multidisciplinary treatment of primary Ewing's sarcoma of bone: a 6-year experience of a European Cooperative trial,” Cancer, vol. 61, no. 1, pp. 23–32, 1988.
[69]  S. Ahrens, C. Hoffmann, S. Jabar, et al., “Evaluation of prognostic in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study,” Medical and Pediatric Oncology, vol. 32, no. 3, pp. 186–195, 1999.
[70]  S. G. DuBois, N. Marina, and J. Glade-Bender, “Angiogenesis and vascular targeting in Ewing sarcoma: a review of preclinical and clinical data,” Cancer, vol. 116, no. 3, pp. 749–757, 2010.
[71]  L. M. Barker, T. W. Pendergrass, J. E. Sanders, and D. S. Hawkins, “Survival after recurrence of Ewing's sarcoma family of tumors,” Journal of Clinical Oncology, vol. 23, no. 19, pp. 4354–4362, 2005.
[72]  K. Tanaka, T. Iwakuma, K. Harimaya, H. Sato, and Y. Iwamoto, “EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells,” The Journal of Clinical Investigation, vol. 99, no. 2, pp. 239–247, 1997.
[73]  S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche, “Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma,” Cancer Research, vol. 65, no. 19, pp. 8984–8992, 2005.
[74]  D. Grimm, K. L. Streetz, C. L. Jopling et al., “Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways,” Nature, vol. 441, no. 7092, pp. 537–541, 2006.
[75]  D. Olmos, S. Postel-Vinay, L. R. Molife et al., “Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study,” The Lancet Oncology, vol. 11, no. 2, pp. 129–135, 2010.
[76]  ESMO Conference, Milan October 2010 In Proferred papers. 13440 Safety and efficacy results from a phase 1/2 study of the anti-IGF-IR antibody figitumab in patients with refractory Ewing and osteosarcomas. Heribert Juergens, Muenster, Germany.
[77]  A. S. Pappo, S. R. Patel, J. Crowley, et al., “R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study,” Journal of Clinical Oncology, vol. 29, no. 34, pp. 4541–4547, 2011.
[78]  A. Naing, R. Kurzrock, A. M. Burger, et al., “Phase I trial of cixutumumab combined with temsirolimus in patients with advanced cancer,” Clinical Cancer Research, vol. 17, no. 18, pp. 6052–6060, 2011.
[79]  S. Chawla, A. Tolcher, A. Staddon, et al., “Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas,” Journal of Clinical Oncology, vol. 24, no. 18, article 9505, supplement, ASCO Annual Meeting Proceedings Part I, 2006.
[80]  M. Bond, M. L. Bernstein, A. Pappo et al., “A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children's Oncology Group study,” Pediatric Blood and Cancer, vol. 50, no. 2, pp. 254–258, 2008.
[81]  J. L. Glade Bender, P. C. Adamson, J. M. Reid et al., “Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group study,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 399–405, 2008.
[82]  K. Skubitz and P. Haddad, “Combination of pegylated-liposomal doxorubicin (PLD) and bevacizumab (B) (PLD-B) in sarcoma (SAR),” Journal of Clinical Oncology, vol. 25, no. 18, article 20506, supplement, ASCO Annual Meeting Proceedings Part I, 2007.
[83]  B. H. Kushner and P. A. Meyers, “How effective is dose-intensive/myeloablative therapy against Ewing's sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review,” Journal of Clinical Oncology, vol. 19, no. 3, pp. 870–880, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133