Purpose. Our aim was to assess the feasibility of using the intercostobrachial nerves (ICBNs) as a possible new anatomic landmark for axillaries lymph node dissection in breast cancer patients. Background Data Summary. The preservation of ICBN is now an accepted procedure in this type of dissection; however, it could be improved further to reduce the number of postoperative complications. The axillary space is divided into lower and upper parts by the ICBN—a thorough investigation of the metastasis patterns in lymph nodes found in this area could supply new information leading to such improvements. Methods. Seventy-two breast cancer patients, all about to undergo lymph node dissection and with sentinel lymph nodes identified, were included in this trial. The lymph nodes were collected in two groups, from lower and upper axillary spaces, relative to the intercostobrachial nerves. The first group was further subdivided into sentinel (SLN) and nonsentinel (non-SLN) nodes. All lymph nodes were tested to detect macro- and micrometastasis. Results. All the sentinel lymph nodes were found under the intercostobrachial nerves; more than 10 lymph nodes were located in that space. Moreover, when lymph nodes macrometastasize or micrometastasize above the intercostobrachial nerves, we also observe metastasis-positive nodes under the nerves; when the lower group nodes show no metastasis, the upper group is also metastasis free. Conclusions. Our results show that the intercostobrachial nerves are good candidates for a new anatomic landmark to be used in lymph node dissection procedure. 1. Introduction The axillary lymph node (ALN) status represents one of the most important prognostic factors in breast cancer patients and determines, among other parameters, the type of subsequent adjuvant treatment [1, 2]. Lymph nodes in axillary space are traditionally divided into 3 groups by pectoralis minor (level I, level II, and level III), according to the rule of lymph nodes metastasis [3]. It is the accepted basic principle for axillary lymph node dissection (ALND) of breast cancer that lymph nodes should be extracted from level I to level III, step by step [4]. The postoperative risk of arm lymphedema increases with the increasing axillary space level during the dissection [5]. On the other hand, the necessity of intercostobrachial nerves (ICBNs) preservation is now accepted by the surgeons and has become the standard procedure in such dissections, reducing the postoperative skin numbness and loss of feeling in the upper arm [6]. The ICBN is nearly parallel to the axillary
References
[1]
Y. Andersson, J. Frisell, M. Sylvan, J. De Boniface, and L. Bergkvist, “Breast cancer survival in relation to the metastatic tumor burden in axillary lymph nodes,” Journal of Clinical Oncology, vol. 28, no. 17, pp. 2868–2873, 2010.
[2]
S. H. Beal, S. R. Martinez, R. J. Canter, S. L. Chen, V. P. Khatri, and R. J. Bold, “Survival in 12,653 breast cancer patients with extensive axillary lymph node metastasis in the anthracycline era,” Medical Oncology, vol. 27, no. 4, pp. 1420–1424, 2010.
[3]
L. R. Lloyd, R. K. Waits, D. Schroder, A. Hawasli, P. Rizzo, and J. Rizzo, “Axillary dissection for breast carcinoma. The myth of skip metastasis,” American Surgeon, vol. 55, no. 6, pp. 381–384, 1989.
[4]
N. Masuda, Y. Tamaki, and S. Noguchi, “Management of axillary and internal mammary lymph nodes in primary breast cancer,” Nippon Geka Gakkai zasshi, vol. 102, no. 6, pp. 465–472, 2001.
[5]
R. D. Pezner, M. P. Patterson, and L. R. Hill, “Arm lymphedema in patients treated conservatively for breast cancer: relationship to patient age and axillary node dissection technique,” International Journal of Radiation Oncology Biology Physics, vol. 12, no. 12, pp. 2079–2083, 1986.
[6]
S. R. M. Freeman, S. J. Washington, T. Pritchard, L. Barr, A. D. Baildam, and N. J. Bundred, “Long term results of a randomised prospective study of preservation of the intercostobrachial nerve,” European Journal of Surgical Oncology, vol. 29, no. 3, pp. 213–215, 2003.
[7]
M. Loukas, J. Hullett, R. G. Louis, S. Holdman, and D. Holdman, “The gross anatomy of the extrathoracic course of the intercostobrachial nerve,” Clinical Anatomy, vol. 19, no. 2, pp. 106–111, 2006.
[8]
C. Mathelin, S. Croce, D. Brasse et al., “Methylene blue dye, an accurate dye for sentinel lymph node identification in early breast cancer,” Anticancer Research, vol. 29, no. 10, pp. 4119–4125, 2009.
[9]
I. Langer, U. Guller, G. Berclaz et al., “Accuracy of frozen section of sentinel lymph nodes: a prospective analysis of 659 breast cancer patients of the Swiss multicenter study,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 129–136, 2009.
[10]
M. F. Dillon, V. Advani, C. Masterson, et al., “The value of level III clearance in patients with axillary and sentinel node positive breast cancer,” Annals of Surgery, vol. 249, no. 5, pp. 834–839, 2009.
[11]
C. K. Axelsson, M. Düring, P. M. Christiansen, et al., “Breast Cancer Cooperative Group Surgical Study Group. Impact on regional recurrence and survival of axillary surgery in women with node-negative primary breast cancer,” British Journal of Surgery, vol. 96, no. 1, pp. 40–46, 2009.
[12]
S. Haghighat, M. Lotfi-Tokaldany, M. Yunesian, M. E. Akbari, F. Nazemi, and J. Weiss, “Comparing two treatment methods for post mastectomy lymphedema: complex decongestive therapy alone and in combination with intermittent pneumatic compression,” Lymphology, vol. 43, no. 1, pp. 25–33, 2010.
[13]
R. J. Tsai, L. K. Dennis, C. F. Lynch, L. G. Snetselaar, G. K. D. Zamba, and C. Scott-Conner, “The risk of developing arm lymphedema among breast cancer survivors: a meta-analysis of treatment factors,” Annals of Surgical Oncology, vol. 16, no. 7, pp. 1959–1972, 2009.
[14]
A. D. Purushotham, T. M. B. Britton, M. B. Klevesath, P. Chou, O. F. Agbaje, and S. W. Duffy, “Lymph node status and breast cancer-related lymphedema,” Annals of Surgery, vol. 246, no. 1, pp. 42–45, 2007.
[15]
S. A. McLaughlin, M. J. Wright, K. T. Morris et al., “Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements,” Journal of Clinical Oncology, vol. 26, no. 32, pp. 5213–5219, 2008.
[16]
M. Loukas, R. G. Louis Jr, and C. T. Wartmann, “T2 contributions to the brachial plexus,” Neurosurgery, vol. 60, no. 2, supplement 1, pp. ONS13–ONS18, 2007.
[17]
S. Yuen, K. Sawai, Y. Ushijima et al., “Evaluation of axillary status in breast cancer CT-based determination of sentinel lymph node size,” Acta Radiologica, vol. 43, no. 6, pp. 579–586, 2002.
[18]
J. I. Goldberg, L. I. Wiechmann, E. R. Riedel, M. Morrow, and K. J. Van Zee, “Morbidity of sentinel node biopsy in breast cancer: the relationship between the number of excised lymph nodes and lymphedema,” Annals of Surgical Oncology, vol. 17, no. 12, pp. 3278–3286, 2010.
[19]
M. Keskek, S. Balas, A. Gokoz, and I. Sayek, “Re-evaluation of axillary skip metastases in the era of sentinel lymph node biopsy in breast cancer,” Surgery Today, vol. 36, no. 12, pp. 1047–1052, 2006.
[20]
C. Boneti, S. Korourian, Z. Diaz et al., “Scientific Impact Award: axillary reverse mapping (ARM) to identify and protect lymphatics draining the arm during axillary lymphadenectomy,” American Journal of Surgery, vol. 198, no. 4, pp. 482–487, 2009.
[21]
S. J. Pain, S. Vowler, and A. D. Purushotham, “Axillary vein abnormalities contribute to development of lymphoedema after surgery for breast cancer,” British Journal of Surgery, vol. 92, no. 3, pp. 311–315, 2005.