全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

Does Changeover by an Experienced Open Prostatic Surgeon from Open Retropubic to Robot-Assisted Laparoscopic Prostatectomy Mean a Step Forward or Backward?

DOI: 10.1155/2013/768647

Full-Text   Cite this paper   Add to My Lib

Abstract:

We assessed whether changeover from open retropubic [RRP] to robotic-assisted laparoscopic prostatectomy [RALP] means a step forward or backward for the initial RALP patients. Therefore the first 105 RALPs of an experienced open prostatic surgeon and robotic novice—with tutoring in the initial 25 cases—were compared to the most recent 105 RRPs of the same surgeon. The groups were comparable with respect to patient characteristics and postoperative tumor characteristics (all ). The only disadvantage of RALP was a longer operating time; the advantages were lower estimated blood loss, fewer anastomotic leakages, earlier catheter removal, shorter hospital stay (all ), and less major complications within 90 days postoperatively ( ). Positive surgical margin rates were comparable both overall and stratified for pT stage in both groups (all ). In addition, an equivalent number of lymph nodes were removed ( ). Twelve months after surgery, patient reported continence and erectile function were comparably good (all ). Our study indicates that an experienced open prostatic surgeon and robotic novice who switches to RALP can achieve favorable surgical results despite the initial RALP learning curve. At the same time neither oncological nor functional outcomes are compromised. 1. Introduction While robot-assisted urologic surgery has gained widespread acceptance in the United States with 1,789 installed daVinci surgical systems as of June 30, 2012, it is in its infancy in Europe and in the rest of the world with only 400 and 273 installed units, respectively. Thus, there are still a large number of urologic institutions that are faced with the question if or not a robotic surgical system should be acquired [1]. This question is important since the most frequent robotic procedure, namely, radical prostatectomy, is demanded more and more by the patients, and shows a growing body of literature reporting sound results for the robotic approach both in open-retropubic versus robotic comparative studies [2–20] and in robotic-only studies [21–28]. However, despite the promising results published, implementation of a new surgical technique like robotics in a robotic-naive institution does not automatically guarantee an improved outcome for the patient. Rather, it could even mean an unfavorable outcome in the first patients of the learning curve, if an unfavorable outcome is defined as a worse outcome than that which could have been achieved by the previously established technique [29]. For radical prostatectomy in our and many other institutions the established technique for

References

[1]  “Intuitive Surgical—Investors—Investor FAQ,” http://phx.corporate-ir.net/phoenix.zhtml?c=122359&p=irol-faq.
[2]  A. Tewari, A. Srivasatava, and M. Menon, “A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution,” BJU International, vol. 92, no. 3, pp. 205–210, 2003.
[3]  T. E. Ahlering, D. Woo, L. Eichel, D. I. Lee, R. Edwards, and D. W. Skarecky, “Robot-assisted versus open radical prostatectomy: a comparison of one surgeon's outcomes,” Urology, vol. 63, no. 5, pp. 819–822, 2004.
[4]  T. M. Webster, S. D. Herrell, S. S. Chang et al., “Robotic assisted laparoscopic radical prostatectomy versus retropubic radical prostatectomy: a prospective assessment of postoperative pain,” The Journal of Urology, vol. 174, no. 3, pp. 912–914, 2005.
[5]  S. B. Farnham, T. M. Webster, S. D. Herrell, and J. A. Smith Jr., “Intraoperative blood loss and transfusion requirements for robotic-assisted radical prostatectomy versus radical retropubic prostatectomy,” Urology, vol. 67, no. 2, pp. 360–363, 2006.
[6]  B. Nelson, M. Kaufman, G. Broughton et al., “Comparison of length of hospital stay between radical retropubic prostatectomy and robotic assisted laparoscopic prostatectomy,” The Journal of Urology, vol. 177, no. 3, pp. 929–931, 2007.
[7]  J. Miller, A. Smith, E. Kouba, E. Wallen, and R. S. Pruthi, “Prospective evaluation of short-term impact and recovery of health related quality of life in men undergoing robotic assisted laparoscopic radical prostatectomy versus open radical prostatectomy,” The Journal of Urology, vol. 178, no. 3, part 1, pp. 854–859, 2007.
[8]  J. A. Smith Jr., R. C. Chan, S. S. Chang et al., “A comparison of the incidence and location of positive surgical margins in robotic assisted laparoscopic radical prostatectomy and open retropubic radical prostatectomy,” The Journal of Urology, vol. 178, no. 6, pp. 2385–2390, 2007.
[9]  F. R. Schroeck, L. Sun, S. J. Freedland et al., “Comparison of prostate-specific antigen recurrence-free survival in a contemporary cohort of patients undergoing either radical retropubic or robot-assisted laparoscopic radical prostatectomy,” BJU International, vol. 102, no. 1, pp. 28–32, 2008.
[10]  A. E. Krambeck, D. S. DiMarco, L. J. Rangel et al., “Radical prostatectomy for prostatic adenocarcinoma: a matched comparison of open retropubic and robot-assisted techniques,” BJU International, vol. 103, no. 4, pp. 448–453, 2009.
[11]  M. A. White, A. P. De Haan, D. D. Stephens, T. K. Maatman, and T. J. Maatman, “Comparative analysis of surgical margins between radical retropubic prostatectomy and RALP: are patients sacrificed during initiation of robotics program?” Urology, vol. 73, no. 3, pp. 567–571, 2009.
[12]  V. Ficarra, G. Novara, S. Fracalanza et al., “A prospective, non-randomized trial comparing robot-assisted laparoscopic and retropubic radical prostatectomy in one european institution,” BJU International, vol. 104, no. 4, pp. 534–539, 2009.
[13]  R. C. D'Alonzo, T. J. Gan, J. W. Moul et al., “A retrospective comparison of anesthetic management of robot-assisted laparoscopic radical prostatectomy versus radical retropubic prostatectomy,” Journal of Clinical Anesthesia, vol. 21, no. 5, pp. 322–328, 2009.
[14]  B. Rocco, D. V. Matei, S. Melegari et al., “Robotic vs open prostatectomy in a laparoscopically naive centre: a matched-pair analysis,” BJU International, vol. 104, no. 7, pp. 991–995, 2009.
[15]  D. A. Barocas, S. Salem, Y. Kordan et al., “Robotic assisted laparoscopic prostatectomy versus radical retropubic prostatectomy for clinically localized prostate cancer: comparison of short-term biochemical recurrence-free survival,” The Journal of Urology, vol. 183, no. 3, pp. 990–996, 2010.
[16]  S. Carlsson, A. E. Nilsson, M. C. Schumacher et al., “Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden,” Urology, vol. 75, no. 5, pp. 1092–1097, 2010.
[17]  N. Doumerc, C. Yuen, R. Savdie et al., “Should experienced open prostatic surgeons convert to robotic surgery? the real learning curve for one surgeon over 3 years,” BJU International, vol. 106, no. 3, pp. 378–384, 2010.
[18]  Y. Kordan, D. A. Barocas, H. O. Altamar et al., “Comparison of transfusion requirements between open and robotic-assisted laparoscopic radical prostatectomy,” BJU International, vol. 106, no. 7, pp. 1036–1040, 2010.
[19]  G. B. Di Pierro, P. Baumeister, P. Stucki, J. Beatrice, H. Danuser, and A. Mattei, “A prospective trial comparing consecutive series of open retropubic and robot-assisted laparoscopic radical prostatectomy in a centre with a limited caseload,” European Urology, vol. 59, no. 1, pp. 1–6, 2011.
[20]  Q. D. Trinh, J. Sammon, M. Sun et al., “Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample,” European Urology, vol. 61, no. 4, pp. 679–685, 2012.
[21]  M. Menon, A. Shrivastava, S. Kaul et al., “Vattikuti Institute prostatectomy: contemporary technique and analysis of results,” European Urology, vol. 51, no. 3, pp. 648–658, 2007.
[22]  V. R. Patel, R. Thaly, and K. Shah, “Robotic radical prostatectomy: outcomes of 500 cases,” BJU International, vol. 99, no. 5, pp. 1109–1112, 2007.
[23]  A. Mottrie, P. Van Migem, G. De Naeyer, P. Schatteman, P. Carpentier, and E. Fonteyne, “Robot-assisted laparoscopic radical prostatectomy: oncologic and functional results of 184 cases,” European Urology, vol. 52, no. 3, pp. 746–751, 2007.
[24]  E. Rodriguez, D. S. Finley, D. Skarecky, and T. E. Ahlering, “Single institution 2-year patient reported validated sexual function outcomes after nerve sparing robot assisted radical prostatectomy,” The Journal of Urology, vol. 181, no. 1, pp. 259–263, 2009.
[25]  R. F. Coelho, K. J. Palmer, B. Rocco et al., “Early complication rates in a single-surgeon series of 2500 robotic-assisted radical prostatectomies: report applying a standardized grading system,” European Urology, vol. 57, no. 6, pp. 945–952, 2010.
[26]  M. Menon, M. Bhandari, N. Gupta et al., “Biochemical recurrence following robot-assisted radical prostatectomy: analysis of 1384 patients with a median 5-year follow-up,” European Urology, vol. 58, no. 6, pp. 838–846, 2010.
[27]  V. R. Patel, A. Sivaraman, R. F. Coelho et al., “Pentafecta: a new concept for reporting outcomes of robot-assisted laparoscopic radical prostatectomy,” European Urology, vol. 59, no. 5, pp. 702–707, 2011.
[28]  V. R. Patel, R. F. Coelho, B. Rocco et al., “Positive surgical margins after robotic assisted radical prostatectomy: a multi-institutional study,” The Journal of Urology, vol. 186, no. 2, pp. 511–516, 2011.
[29]  S. D. Herrell and J. A. Smith, “Robotic-assisted laparoscopic prostatectomy: what is the learning curve?” Urology, vol. 66, no. 5, pp. 105–107, 2005.
[30]  V. R. Patel, A. S. Tully, R. Holmes, and J. Lindsay, “Robotic radical prostatectomy in the community setting—the learning curve and beyond: initial 200 cases,” The Journal of Urology, vol. 174, no. 1, pp. 269–272, 2005.
[31]  F. Atug, E. P. Castle, S. K. Srivastav, S. V. Burgess, R. Thomas, and R. Davis, “Positive surgical margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes,” European Urology, vol. 49, no. 5, pp. 866–872, 2006.
[32]  W. Artibani, S. Fracalanza, S. Cavalleri et al., “Learning curve and preliminary experience with da Vinci-assisted laparoscopic radical prostatectomy,” Urologia Internationalis, vol. 80, no. 3, pp. 237–244, 2008.
[33]  F. Rocco, L. Carmignani, P. Acquati et al., “Restoration of Posterior Aspect of Rhabdosphincter Shortens Continence Time After Radical Retropubic Prostatectomy,” The Journal of Urology, vol. 175, no. 6, pp. 2201–2206, 2006.
[34]  P. C. Walsh, H. Lepor, and J. C. Eggleston, “Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations,” Prostate, vol. 4, no. 5, pp. 473–485, 1983.
[35]  J. L. Donovan, T. J. Peters, P. Abrams, S. T. Brookes, J. J. M. C. H. De La Rosette, and W. Sch?fer, “Scoring the short form ICSmaleSF questionnaire,” The Journal of Urology, vol. 164, no. 6, pp. 1948–1955, 2000.
[36]  R. C. Rosen, J. C. Cappelleri, M. D. Smith, J. Lipsky, and B. M. Pe?, “Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction,” International Journal of Impotence Research, vol. 11, no. 6, pp. 319–326, 1999.
[37]  P. A. Clavien, J. Barkun, M. L. de Oliveira et al., “The clavien-dindo classification of surgical complications: five-year experience,” Annals of Surgery, vol. 250, no. 2, pp. 187–196, 2009.
[38]  H. Dev, N. L. Sharma, S. N. Dawson, D. E. Neal, and N. Shah, “Detailed analysis of operating time learning curves in robotic prostatectomy by a novice surgeon,” BJU International, vol. 109, no. 7, pp. 1074–1080, 2012.
[39]  F. Porpiglia, C. Terrone, R. Tarabuzzi et al., “Transperitoneal versus extraperitoneal laparoscopic radical prostatectomy: experience of a single center,” Urology, vol. 68, no. 2, pp. 376–380, 2006.
[40]  P. Swindle, J. A. Eastham, M. Ohori et al., “Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens,” The Journal of Urology, vol. 174, no. 3, pp. 903–907, 2005.
[41]  S. A. Kaul, J. O. Peabody, N. Shah, D. Neal, and M. Menon, “Establishing a robotic prostatectomy programme: the impact of mentoring using a structured approach,” BJU International, vol. 97, no. 6, pp. 1143–1144, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133