全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

Diabetes and Risk of Cancer

DOI: 10.1155/2013/583786

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes and cancer represent two complex, diverse, chronic, and potentially fatal diseases. Cancer is the second leading cause of death, while diabetes is the seventh leading cause of death with the latter still likely underreported. There is a growing body of evidence published in recent years that suggest substantial increase in cancer incidence in diabetic patients. The worldwide prevalence of diabetes was estimated to rise from 171 million in 2000 to 366 million in 2030. About 26.9% of all people over 65 have diabetes and 60% have cancer. Overall, 8–18% of cancer patients have diabetes. In the context of epidemiology, the burden of both diseases, small association between diabetes and cancer will be clinically relevant and should translate into significant consequences for future health care solutions. This paper summarizes most of the epidemiological association studies between diabetes and cancer including studies relating to the general all-site increase of malignancies in diabetes and elevated organ-specific cancer rate in diabetes as comorbidity. Additionally, we have discussed the possible pathophysiological mechanisms that likely may be involved in promoting carcinogenesis in diabetes and the potential of different antidiabetic therapies to influence cancer incidence. 1. Confounding Factors Patients with diabetes are at a higher risk than the general population of developing cancer of the urinary tract, liver, biliary tract, pancreas, colon, endometrium, and kidney. Several confounding factors directly associated with clinical diversities of diabetes are varying levels of metabolic controls, duration of diabetes, profiles of antidiabetic therapy, and the presence of complications or comorbidities. Therefore it is problematic to precisely evaluate cancer risk in diabetes. Moreover, shared risk factors for both diseases such as age, sex, ethnicity, alcohol, tobacco, diet, physical activity obesity, and BMI seem to further complicate the relation [1]. Although most of studies were adjusted for this and other confounders, particular contribution of obesity, diet, and physical activity to elevated cancer rate should be taken into account. These are factors that often coexist, influence, or even cause the diabetes and have also been shown to independently influence cancer risk. The majority of diabetic patients are obese or overweight [2]. The increased cancer risk in obesity has been established in several studies for cancers of the colon, rectum, breast, endometrium, pancreas, kidney, liver, gall bladder, and adenocarcinoma of esophagus [3].

References

[1]  E. Giovannucci, D. M. Harlan, M. C. Archer et al., “Diabetes and cancer: a consensus report,” CA Cancer Journal for Clinicians, vol. 60, no. 4, pp. 207–221, 2010.
[2]  Centers for Disease Control and Prevention (CDC), “Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988–1994 and 1999–2002,” Morbidity and Mortality Weekly Report, vol. 53, no. 45, pp. 1066–1068, 2004.
[3]  E. E. Calle and M. J. Thun, “Obesity and cancer,” Oncogene, vol. 23, no. 38, pp. 6365–6378, 2004.
[4]  E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004.
[5]  T. Kulie, A. Slattengren, J. Redmer, H. Counts, A. Eglash, and S. Schrager, “Obesity and women's health: an evidence-based review,” Journal of the American Board of Family Medicine, vol. 24, no. 1, pp. 75–85, 2011.
[6]  A. H. Eliassen, G. A. Colditz, B. Rosner, W. C. Willett, and S. E. Hankinson, “Adult weight change and risk of postmenopausal breast cancer,” The Journal of the American Medical Association, vol. 296, no. 2, pp. 193–201, 2006.
[7]  C. La Vecchia, S. H. Giordano, G. N. Hortobagyi, and B. Chabner, “Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle,” Oncologist, vol. 16, no. 6, pp. 726–729, 2011.
[8]  D. Leroith, R. Novosyadlyy, E. J. Gallagher et al., “Obesity and Type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence,” Experimental and Clinical Endocrinology & Diabetes, vol. 116, supplement 1, pp. S4–S6, 2008.
[9]  J. Ma, H. Li, E. Giovannucci et al., “Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis,” The Lancet Oncology, vol. 9, no. 11, pp. 1039–1047, 2008.
[10]  A. Schienkiewitz, M. B. Schulze, K. Hoffmann, A. Kroke, and H. Boeing, “Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 427–433, 2006.
[11]  M. A. Abdul-Ghani, M. Sabbah, B. Muati et al., “High frequency of pre-diabetes, undiagnosed diabetes and metabolic syndrome among overweight Arabs in Israel,” Israel Medical Association Journal, vol. 7, no. 3, pp. 143–147, 2005.
[12]  M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008.
[13]  S. Krishnan, L. Rosenberg, M. Singer et al., “Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women,” Archives of Internal Medicine, vol. 167, no. 21, pp. 2304–2309, 2007.
[14]  A. W. Barclay, P. Petocz, J. McMillan-Price et al., “Glycemic index, glycemic load, and chronic disease risk—a metaanalysis of observational studies,” The American Journal of Clinical Nutrition, vol. 87, no. 3, pp. 627–637, 2008.
[15]  J.-Y. Dong and L.-Q. Qin, “Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies,” Breast Cancer Research and Treatment, vol. 126, no. 2, pp. 287–294, 2011.
[16]  J. Hu, C. La Vecchia, L. S. Augustin et al., “Glycemic index, glycemic load and cancer risk,” Annals of Oncology, vol. 24, no. 1, pp. 245–251, 2013.
[17]  P. Gnagnarella, S. Gandini, C. La Vecchia, and P. Maisonneuve, “Glycemic index, glycemic load, and cancer risk: a meta-analysis,” The American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1793–1801, 2008.
[18]  C.-M. Kastorini and D. B. Panagiotakos, “Dietary patterns and prevention of type 2 diabetes: from research to clinical practice; a systematic review,” Current Diabetes Reviews, vol. 5, no. 4, pp. 221–227, 2009.
[19]  L. H. Kushi, T. Byers, C. Doyle, et al., “American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity,” CA: A Cancer Journal for Clinicians, vol. 56, no. 5, pp. 254–281, 2006.
[20]  C. La Vecchia, “Mediterranean diet and cancer,” Public Health Nutrition, vol. 7, no. 7, pp. 965–968, 2004.
[21]  R. Doll, “The lessons of life: keynote address to the nutrition and cancer conference,” Cancer Research, vol. 52, no. 7, supplement, pp. 2024s–2029s, 1992.
[22]  T. Stocks, K. Rapp, T. Bj?rge et al., “Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (Me-Can): analysis of six prospective cohorts,” PLoS Medicine, vol. 6, no. 12, Article ID 1000201, 2009.
[23]  S. H. Jee, H. Ohrr, J. W. Sull, J. E. Yun, M. Ji, and J. M. Samet, “Fasting serum glucose level and cancer risk in Korean men and women,” The Journal of the American Medical Association, vol. 293, no. 2, pp. 194–202, 2005.
[24]  K. Liu, J. Stamler, R. Stamler, et al., “Methodological problems in characterizing an individual’s plasma glucose level,” Journal of Chronic Diseases, vol. 35, no. 6, pp. 475–485, 1982.
[25]  R. Clarke, M. Shipley, S. Lewington et al., “Underestimation of risk associations due to regression dilution in long- term follow-up of prospective studies,” American Journal of Epidemiology, vol. 150, no. 4, pp. 341–353, 1999.
[26]  H. F. Bunn, K. H. Gabbay, and P. M. Gallop, “The glycosylation of hemoglobin: relevance to diabetes mellitus,” Science, vol. 200, no. 4337, pp. 21–27, 1978.
[27]  “Executive summary: standards of medical care in diabetes—2010,” Diabetes Care, vol. 33, supplement 1, pp. S4–S10, 2010.
[28]  N. Travier, M. Jeffreys, N. Brewer et al., “Association between glycosylated hemoglobin and cancer risk: a New Zealand linkage study,” Annals of Oncology, vol. 18, no. 8, pp. 1414–1419, 2007.
[29]  C. E. Joshu, A. E. Prizment, P. J. Dluzniewski, et al., “Glycated hemoglobin and cancer incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 1990–2006,” International Journal of Cancer, vol. 131, no. 7, pp. 1667–1677, 2012.
[30]  X. Yang, G. T. C. Ko, W. Y. So et al., “Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry,” Diabetes, vol. 59, no. 5, pp. 1254–1260, 2010.
[31]  J. Miao Jonasson, J. Cederholm, B. Eliasson, B. Zethelius, K. Eeg-Olofsson, and S. Gudbj?rnsdottir, “HbA1C and cancer risk in patients with type 2 diabetes—a nationwide population-based prospective cohort study in Sweden,” PloS One, vol. 7, no. 6, Article ID e38784, 2012.
[32]  K.-T. Khaw, N. Wareham, S. Bingham, R. Luben, A. Welch, and N. Day, “Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European Prospective Investigation into Cancer-Norfolk Study,” Cancer Epidemiology Biomarkers & Prevention, vol. 13, no. 6, pp. 915–919, 2004.
[33]  S. H. Saydah, E. A. Platz, N. Rifai, M. N. Pollak, F. L. Brancati, and K. J. Helzlsouer, “Association of markers of insulin and glucose control with subsequent colorectal cancer risk,” Cancer Epidemiology Biomarkers & Prevention, vol. 12, no. 5, pp. 412–418, 2003.
[34]  B. J. Kim, Y.-H. Kim, D. H. Sinn et al., “Clinical usefulness of glycosylated hemoglobin as a predictor of adenomatous polyps in the colorectum of middle-aged males,” Cancer Causes & Control, vol. 21, no. 6, pp. 939–944, 2010.
[35]  V. Donadon, M. Balbi, F. Valent, and A. Avogaro, “Glycated hemoglobin and antidiabetic strategies as risk factors for hepatocellular carcinoma,” World Journal of Gastroenterology, vol. 16, no. 24, pp. 3025–3032, 2010.
[36]  V. A. Grote, S. Rohrmann, A. Nieters, et al., “Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,” Diabetologia, vol. 54, no. 12, pp. 3037–3046, 2011.
[37]  G. Misciagna, G. De Michele, V. Guerra, A. M. Cisternino, A. Di Leo, and J. L. Freudenheim, “Serum fructosamine and colorectal adenomas,” European Journal of Epidemiology, vol. 19, no. 5, pp. 425–432, 2004.
[38]  H. Noto, T. Tsujimoto, T. Sasazuki, and M. Noda, “Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis,” Endocrine Practice, vol. 17, no. 4, pp. 616–628, 2011.
[39]  H. Noto, K. Osame, T. Sasazuki, and M. Noda, “Substantially increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis of epidemiologic evidence in Japan,” Journal of Diabetes and Its Complications, vol. 24, no. 5, pp. 345–353, 2010.
[40]  H.-C. Yeh, E. A. Platz, N.-Y. Wang, K. Visvanathan, K. J. Helzlsouer, and F. L. Brancati, “A prospective study of the associations between treated diabetes and cancer outcomes,” Diabetes Care, vol. 35, no. 1, pp. 113–118, 2012.
[41]  M.-Y. Lee, K.-D. Lin, P.-J. Hsiao, and S.-J. Shin, “The association of diabetes mellitus with liver, colon, lung, and prostate cancer is independent of hypertension, hyperlipidemia, and gout in Taiwanese patients,” Metabolism, vol. 61, no. 2, pp. 242–249, 2012.
[42]  S.-F. Lo, S.-N. Chang, C.-H. Muo, et al., “Modest increase in risk of specific types of cancer types in type 2 diabetes mellitus patients,” International Journal of Cancer, vol. 2, no. 1, pp. 182–188, 2013.
[43]  H.-W. Hense, H. Kajuter, J. Wellmann, and W. U. Batzler, “Cancer incidence in type 2 diabetes patients—first results from a feasibility study of the D2C cohort,” Diabetology & Metabolic Syndrome, vol. 3, article 15, 2011.
[44]  N. Geraldine, A. Marc, T. Carla et al., “Relation between diabetes, metformin treatment and the occurrence of malignancies in a Belgian primary care setting,” Diabetes Research and Clinical Practice, vol. 97, no. 2, pp. 331–336, 2012.
[45]  P.-H. Zhang, Z.-W. Chen, D. Lv, et al., “Increased risk of cancer in patients with type 2 diabetes mellitus: a retrospective cohort study in China,” BMC Public Health, vol. 12, article 567, 2012.
[46]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[47]  C. Wang, X. Wang, G. Gong et al., “Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies,” International Journal of Cancer, vol. 130, no. 7, pp. 1639–1648, 2012.
[48]  C.-J. Weng, Y.-H. Hsieh, C.-M. Tsai et al., “Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma,” Annals of Surgical Oncology, vol. 17, no. 7, pp. 1808–1815, 2010.
[49]  J. K. Wiencke, “Impact of race/ethnicity on molecular pathways in human cancer,” Nature Reviews Cancer, vol. 4, no. 1, pp. 79–84, 2004.
[50]  P. Vigneri, F. Frasca, L. Sciacca, G. Pandini, and R. Vigneri, “Diabetes and cancer,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1103–1123, 2009.
[51]  S. H. Mehta, F. L. Brancati, M. S. Sulkowski, S. A. Strathdee, M. Szklo, and D. L. Thomas, “Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States,” Annals of Internal Medicine, vol. 133, no. 8, pp. 592–599, 2000.
[52]  Y. Shintani, H. Fujie, H. Miyoshi et al., “Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance,” Gastroenterology, vol. 126, no. 3, pp. 840–848, 2004.
[53]  H. Miyamoto, K. Moriishi, K. Moriya et al., “Involvement of the PA28γ-dependent pathway in insulin resistance induced by hepatitis C virus core protein,” Journal of Virology, vol. 81, no. 4, pp. 1727–1735, 2007.
[54]  Y. Sasaki and J. R. Wands, “Ethanol impairs insulin receptor substrate-1 mediated signal transduction during rat liver regeneration,” Biochemical and Biophysical Research Communications, vol. 199, no. 1, pp. 403–409, 1994.
[55]  J. He, S. de la Monte, and J. R. Wands, “Acute ethanol exposure inhibits insulin signaling in the liver,” Hepatology, vol. 46, no. 6, pp. 1791–1800, 2007.
[56]  C. D. Williams, J. Stengel, M. I. Asike et al., “Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study,” Gastroenterology, vol. 140, no. 1, pp. 124–131, 2011.
[57]  G. Vernon, A. Baranova, and Z. M. Younossi, “Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults,” Alimentary Pharmacology & Therapeutics, vol. 34, no. 3, pp. 274–285, 2011.
[58]  J. A. Marrero, R. J. Fontana, G. L. Su, H. S. Conjeevaram, D. M. Emick, and A. S. Lok, “NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States,” Hepatology, vol. 36, no. 6, pp. 1349–1354, 2002.
[59]  P. Angulo, “Nonalcoholic fatty liver disease,” Revista De Gastroenterología De México, vol. 70, supplement 3, pp. 52–56, 2005.
[60]  A. Duseja, M. Nanda, A. Das, R. Das, A. Bhansali, and Y. Chawla, “Prevalence of obesity, diabetes mellitus and hyperlipidaemia in patients with cryptogenic liver cirrhosis,” Tropical Gastroenterology, vol. 25, no. 1, pp. 15–17, 2004.
[61]  G. Baffy, E. M. Brunt, and S. H. Caldwell, “Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace,” Journal of Hepatology, vol. 56, no. 6, pp. 1384–1391, 2012.
[62]  Y. Takuma and K. Nouso, “Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review,” World Journal of Gastroenterology, vol. 16, no. 12, pp. 1436–1441, 2010.
[63]  J. Ertle, A. Dechêne, J.-P. Sowa et al., “Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis,” International Journal of Cancer, vol. 128, no. 10, pp. 2436–2443, 2011.
[64]  Q. Ben, M. Xu, X. Ning et al., “Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies,” European Journal of Cancer, vol. 47, no. 13, pp. 1928–1937, 2011.
[65]  S. T. Chari, C. L. Leibson, K. G. Rabe et al., “Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer,” Gastroenterology, vol. 134, no. 1, pp. 95–101, 2008.
[66]  R. Pannala, C. L. Leibson, K. G. Rabe et al., “Temporal association of changes in fasting blood glucose and body mass index with diagnosis of pancreatic cancer,” American Journal of Gastroenterology, vol. 104, no. 9, pp. 2318–2325, 2009.
[67]  R. Pannala, J. B. Leirness, W. R. Bamlet, A. Basu, G. M. Petersen, and S. T. Chari, “Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus,” Gastroenterology, vol. 134, no. 4, pp. 981–987, 2008.
[68]  J. Permert, I. Ihse, L. Jorfeldt, H. von Schenck, H. J. Arnquist, and J. Larsson, “Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer,” The British Journal of Surgery, vol. 80, no. 8, pp. 1047–1050, 1993.
[69]  P. Fogar, C. Pasquali, D. Basso et al., “Diabetes mellitus in pancreatic cancer follow-up,” Anticancer Research, vol. 14, no. 6, pp. 2827–2830, 1994.
[70]  D. Basso, A. Valerio, R. Seraglia et al., “Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide,” Pancreas, vol. 24, no. 1, pp. 8–14, 2002.
[71]  J. H. Lee, S.-A. Kim, H. Y. Park, et al., “New-onset diabetes patients need pancreatic cancer screening?” Journal of Clinical Gastroenterology, vol. 46, no. 7, pp. 58–61, 2012.
[72]  Y. Cui and D. K. Andersen, “Diabetes and pancreatic cancer,” Endocrine-Related Cancer, vol. 19, no. 5, pp. F9–F26, 2012.
[73]  S. Kolb, R. Fritsch, D. Saur, M. Reichert, R. M. Schmid, and G. Schneider, “HMGA1 controls transcription of insulin receptor to regulate cyclin D1 translation in pancreatic cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4679–4686, 2007.
[74]  M. Kornmann, H. Maruyama, U. Bergmann et al., “Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer,” Cancer Research, vol. 58, no. 19, pp. 4250–4254, 1998.
[75]  A. E. Butler, R. Galasso, A. Matveyenko, R. A. Rizza, S. Dry, and P. C. Butler, “Pancreatic duct replication is increased with obesity and type 2 diabetes in humans,” Diabetologia, vol. 53, no. 1, pp. 21–26, 2010.
[76]  R. Z. Stolzenberg-Solomon, B. I. Graubard, S. Chari et al., “Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers,” The Journal of the American Medical Association, vol. 294, no. 22, pp. 2872–2878, 2005.
[77]  L. Deng, Z. Gui, L. Zhao, J. Wang, and L. Shen, “Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis,” Digestive Diseases and Sciences, vol. 57, no. 6, pp. 1576–1585, 2012.
[78]  R. E. Schoen, J. L. Weissfeld, L. H. Kuller et al., “Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps,” Gastroenterology, vol. 129, no. 2, pp. 464–475, 2005.
[79]  R. Eddi, A. Karki, A. Shah, V. A. DeBari, and J. R. DePasquale, “Association of type 2 diabetes and colon adenomas,” Journal of Gastrointestinal Cancer, vol. 43, no. 1, pp. 87–92, 2012.
[80]  A. A. Siddiqui, H. Maddur, S. Naik, and B. Cryer, “The association of elevated HbA1c on the behavior of adenomatous polyps in patients with type-II diabetes mellitus,” Digestive Diseases and Sciences, vol. 53, no. 4, pp. 1042–1047, 2008.
[81]  S. C. Larsson, N. Orsini, and A. Wolk, “Diabetes mellitus and risk of colorectal cancer: a meta-analysis,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1679–1687, 2005.
[82]  P. R. Debruyne, E. A. Bruyneel, X. Li, A. Zimber, C. Gespach, and M. M. Mareel, “The role of bile acids in carcinogenesis,” Mutation Research, vol. 480-481, pp. 359–369, 2001.
[83]  K. Kajiura, T. Ohkusa, and I. Okayasu, “Relationship between fecal bile acids and the occurrence of colorectal neoplasia in experimental murine ulcerative colitis,” Digestion, vol. 59, no. 1, pp. 69–72, 1998.
[84]  W. Jing, G. Jin, X. Zhou et al., “Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis,” European Journal of Cancer Prevention, vol. 21, no. 1, pp. 24–31, 2012.
[85]  S. B. Biddinger, J. T. Haas, B. B. Yu et al., “Hepatic insulin resistance directly promotes formation of cholesterol gallstones,” Nature Medicine, vol. 14, no. 7, pp. 778–782, 2008.
[86]  W. Huang, H. Ren, Q. Ben, Q. Cai, W. Zhu, and Z. Li, “Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies,” Cancer Causes & Control, vol. 23, no. 2, pp. 263–272, 2012.
[87]  T. Kamiya, H. Adachi, M. Hirako et al., “Impaired gastric motility and its relationship to reflux symptoms in patients with nonerosive gastroesophageal reflux disease,” Journal of Gastroenterology, vol. 44, no. 3, pp. 183–189, 2009.
[88]  S. C. Larsson and A. Wolk, “Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies,” Diabetologia, vol. 54, no. 5, pp. 1013–1018, 2011.
[89]  P. Russo, “End stage and chronic kidney disease: associations with renal cancer,” Frontiers in Oncology, vol. 2, p. 28, 2012.
[90]  G. Corrao, L. Scotti, V. Bagnardi, and R. Sega, “Hypertension, antihypertensive therapy and renal-cell cancer: a meta-analysis,” Current Drug Safety, vol. 2, no. 2, pp. 125–133, 2007.
[91]  F. M. Shebl, J. L. Warren, P. W. Eggers, and E. A. Engels, “Cancer risk among elderly persons with end-stage renal disease: a population-based case-control study,” BMC Nephrology, vol. 13, article 65, 2012.
[92]  R. Pyram, A. Kansara, M. A. Banerji, and L. Loney-Hutchinson, “Chronic kidney disease and diabetes,” Maturitas, vol. 71, no. 2, pp. 94–103, 2012.
[93]  V. Bijol, G. P. Mendez, S. Hurwitz, H. G. Rennke, and V. Nosé, “Evaluation of the nonneoplastic pathology in tumor nephrectomy specimens: predicting the risk of progressive renal failure,” The American Journal of Surgical Pathology, vol. 30, no. 5, pp. 575–584, 2006.
[94]  S. M. Bonsib and Y. Pei, “The non-neoplastic kidney in tumor nephrectomy specimens: what can it show and what is important?” Advances in Anatomic Pathology, vol. 17, no. 4, pp. 235–250, 2010.
[95]  S. L. Habib, T. J. Prihoda, M. Luna, and S. A. Werner, “Diabetes and risk of renal cell carcinoma,” Journal of Cancer, vol. 3, pp. 42–48, 2012.
[96]  S. C. Larsson, N. Orsini, K. Brismar, and A. Wolk, “Diabetes mellitus and risk of bladder cancer: a meta-analysis,” Diabetologia, vol. 49, no. 12, pp. 2819–2823, 2006.
[97]  C. G. Woolcott, G. Maskarinec, C. A. Haiman, B. E. Henderson, and L. N. Kolonel, “Diabetes and urothelial cancer risk: the Multiethnic Cohort study,” Cancer Epidemiology, vol. 35, no. 6, pp. 551–554, 2011.
[98]  Y. Neuzillet, X. Tillou, R. Mathieu, et al., “Renal cell carcinoma (RCC) in patients with end-stage renal disease exhibits many favourable clinical, pathologic, and outcome features compared with RCC in the general population,” European Urology, vol. 60, no. 2, pp. 366–373, 2011.
[99]  P.-H. Hung, C.-H. Shen, H.-B. Tsai et al., “Urothelial carcinoma in patients with advanced kidney disease: a 12-year retrospective cohort survey,” American Journal of the Medical Sciences, vol. 342, no. 2, pp. 148–152, 2011.
[100]  P.-H. Hung, C.-H. Shen, Y.-L. Chiu et al., “The aggressiveness of urinary tract urothelial carcinoma increases with the severity of chronic kidney disease,” The British Journal of Urology International, vol. 104, no. 10, pp. 1471–1474, 2009.
[101]  E. C. Hwang, Y. J. Kim, I. S. Hwang, et al., “Impact of diabetes mellitus on recurrence and progression in patients with non-muscle invasive bladder carcinoma: a retrospective cohort study,” International Journal of Urology, vol. 18, no. 11, pp. 769–776, 2011.
[102]  H. El-Mosalamy, T. M. Salman, A. M. Ashmawey, and N. Osama, “Role of chronic E. coli infection in the process of bladder cancer—an experimental study,” Infectious Agents and Cancer, vol. 7, article 19, 2012.
[103]  S. Liao, J. Li, W. Wei et al., “Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 4, pp. 1061–1065, 2011.
[104]  E. Friberg, N. Orsini, C. S. Mantzoros, and A. Wolk, “Diabetes mellitus and risk of endometrial cancer: a meta-analysis,” Diabetologia, vol. 50, no. 7, pp. 1365–1374, 2007.
[105]  R. E. James, A. Lukanova, L. Dossus, et al., “Postmenopausal serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study,” Cancer Prevention Research, vol. 4, no. 10, pp. 1626–1635, 2011.
[106]  N. E. Allen, T. J. Key, L. Dossus et al., “Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC),” Endocrine-Related Cancer, vol. 15, no. 2, pp. 485–497, 2008.
[107]  J. J. Castillo, N. Mull, J. L. Reagan, S. Nemr, and J. Mitri, “Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies,” Blood, vol. 119, no. 21, pp. 4845–4850, 2012.
[108]  V. L. Z. Gordon-Dseagu, N. Shelton, and J. S. Mindell, “Epidemiological evidence of a relationship between type-1 diabetes mellitus and cancer: a review of the existing literature,” International Journal of Cancer, vol. 132, no. 3, pp. 501–508, 2013.
[109]  R. J. Stevens, A. W. Roddam, and V. Beral, “Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis,” British Journal of Cancer, vol. 96, no. 3, pp. 507–509, 2007.
[110]  “CDC—2011 National Estimates—2011 National Diabetes Fact Sheet—Publications—Diabetes DDT”.
[111]  S. H. Saydah, C. M. Loria, M. S. Eberhardt, and F. L. Brancati, “Abnormal glucose tolerance and the risk of cancer death in the United States,” American Journal of Epidemiology, vol. 157, no. 12, pp. 1092–1100, 2003.
[112]  P. M. Rothwell, M. Wilson, C.-E. Elwin et al., “Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials,” The Lancet, vol. 376, no. 9754, pp. 1741–1750, 2010.
[113]  C. Bosetti, V. Rosato, S. Gallus, J. Cuzick, and C. La Vecchia, “Aspirin and cancer risk: a quantitative review to 2011,” Annals of Oncology, vol. 23, no. 6, pp. 1403–1415, 2012.
[114]  P. M. Rothwell, J. F. Price, F. G. R. Fowkes, et al., “Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials,” The Lancet, vol. 379, no. 9826, pp. 1602–1612, 2012.
[115]  F. Ikeda, Y. Doi, K. Yonemoto et al., “Hyperglycemia increases risk of gastric cancer posed by Helicobacter pylori infection: a population-based cohort study,” Gastroenterology, vol. 136, no. 4, pp. 1234–1241, 2009.
[116]  K. G. Brodovicz, T. D. Kou, C. M. Alexander, et al., “Impact of diabetes duration and chronic pancreatitis on the association between type 2 diabetes and pancreatic cancer risk,” Diabetes, Obesity & Metabolism, vol. 14, no. 12, pp. 1123–1128, 2012.
[117]  T. J. Beckman, R. M. Cuddihy, S. M. Scheitel, J. M. Naessens, J. M. Killian, and V. S. Pankratz, “Screening mammogram utilization in women with diabetes,” Diabetes Care, vol. 24, no. 12, pp. 2049–2053, 2001.
[118]  J. G. Marshall, J. M. Cowell, E. S. Campbell, and D. B. McNaughton, “Regional variations in cancer screening rates found in women with diabetes,” Nursing Research, vol. 59, no. 1, pp. 34–41, 2010.
[119]  A. M. McBean and X. Yu, “The underuse of screening services among elderly women with diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1466–1472, 2007.
[120]  M. Martin and R. Marais, “Metformin: a diabetes drug for cancer, or a cancer drug for diabetics?” Journal of Clinical Oncology, vol. 30, no. 21, pp. 2698–2700, 2012.
[121]  R. Rattan, R. Ali Fehmi, and A. Munkarah, “Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis,” Journal of Oncology, vol. 2012, Article ID 928127, 12 pages, 2012.
[122]  E. J. Gallagher and D. LeRoith, “Diabetes, cancer, and metformin: connections of metabolism and cell proliferation,” Annals of the New York Academy of Sciences, vol. 1243, pp. 54–68, 2011.
[123]  K.-H. Yan, C.-J. Yao, H.-Y. Chang, G.-M. Lai, A.-L. Cheng, and S.-E. Chuang, “The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells,” Molecular Carcinogenesis, vol. 49, no. 3, pp. 235–246, 2010.
[124]  H. A. Hirsch, D. Iliopoulos, P. N. Tsichlis, and K. Struhl, “Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission,” Cancer Research, vol. 69, no. 19, pp. 7507–7511, 2009.
[125]  Z. Zhu, W. Jiang, M. D. Thompson, J. N. McGinley, and H. J. Thompson, “Metformin as an energy restriction mimetic agent for breast cancer prevention,” Journal of Carcinogenesis, vol. 10, article 17, 2011.
[126]  S. D. Hursting, S. M. Smith, L. M. Lashinger, A. E. Harvey, and S. N. Perkins, “Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research,” Carcinogenesis, vol. 31, no. 1, pp. 83–89, 2009.
[127]  C. Algire, O. Moiseeva, X. Deschênes-Simard, et al., “Metformin reduces endogenous reactive oxygen species and associated DNA damage,” Cancer Prevention Research, vol. 5, no. 4, pp. 536–543, 2012.
[128]  H. Noto, A. Goto, T. Tsujimoto, and M. Noda, “Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis,” PloS One, vol. 7, no. 3, Article ID e33411, 2012.
[129]  S. Jiralerspong, S. L. Palla, S. H. Giordano et al., “Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer,” Journal of Clinical Oncology, vol. 27, no. 20, pp. 3297–3302, 2009.
[130]  B.-X. Tan, W.-X. Yao, J. Ge, et al., “Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes,” Cancer, vol. 117, no. 22, pp. 5103–5111, 2011.
[131]  J. H. Lee, T. Kim II, S. M. Jeon, S. P. Hong, J. H. Cheon, and W. H. Kim, “The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus,” International Journal of Cancer, vol. 131, no. 3, pp. 752–759, 2012.
[132]  G. Z. Rocha, M. M. Dias, E. R. Ropelle, et al., “Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth,” Clinical Cancer Research, vol. 17, no. 12, pp. 3993–4005, 2011.
[133]  K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001.
[134]  A. Aiello, G. Pandini, F. Frasca et al., “Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells,” Endocrinology, vol. 147, no. 9, pp. 4463–4475, 2006.
[135]  A. Rubenstrunk, R. Hanf, D. W. Hum, J.-C. Fruchart, and B. Staels, “Safety issues and prospects for future generations of PPAR modulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 1065–1081, 2007.
[136]  M. Monami, C. Lamanna, N. Marchionni, and E. Mannucci, “Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials,” Diabetes Care, vol. 31, no. 7, pp. 1455–1460, 2008.
[137]  I. N. Colmers, S. L. Bowker, S. R. Majumdar, and J. A. Johnson, “Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis,” Canadian Medical Association Journal, vol. 184, no. 12, pp. 675–683, 2012.
[138]  M. Elashoff, A. V. Matveyenko, B. Gier, R. Elashoff, and P. C. Butler, “Pancreatitis, pancreatic, and thyroid cancer with Glucagon-like peptide-1based therapies,” Gastroenterology, vol. 141, no. 1, pp. 150–156, 2011.
[139]  C. J. Currie, C. D. Poole, and E. A. M. Gale, “The influence of glucose-lowering therapies on cancer risk in type 2 diabetes,” Diabetologia, vol. 52, no. 9, pp. 1766–1777, 2009.
[140]  M. Bodmer, C. Becker, C. Meier, S. S. Jick, and C. R. Meier, “Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis,” The American Journal of Gastroenterology, vol. 107, no. 4, pp. 620–626, 2012.
[141]  S. L. Bowker, S. R. Majumdar, P. Veugelers, and J. A. Johnson, “Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin,” Diabetes Care, vol. 29, no. 2, pp. 254–258, 2006.
[142]  D. Soranna, L. Scotti, A. Zambon, et al., “Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis,” The Oncologist, vol. 17, no. 6, pp. 813–822, 2012.
[143]  S. Jabbour, “Primary care physicians and insulin initiation: multiple barriers, lack of knowledge or both?” International Journal of Clinical Practice, vol. 62, no. 6, pp. 845–847, 2008.
[144]  M. Janghorbani, M. Dehghani, and M. Salehi-Marzijarani, “Systematic review and meta-analysis of insulin therapy and risk of cancer,” Hormones & Cancer, vol. 3, no. 4, pp. 137–146, 2012.
[145]  D. Simon and B. Balkau, “Diabetes mellitus, hyperglycaemia and cancer,” Diabetes & Metabolism, vol. 36, no. 3, pp. 182–191, 2010.
[146]  S. K. Garg, I. B. Hirsch, and J. S. Skyler, “Insulin glargine and cancer-an unsubstantiated allegation,” Diabetes Technology & Therapeutics, vol. 11, no. 8, pp. 473–476, 2009.
[147]  S. J. Pocock and L. Smeeth, “Insulin glargine and malignancy: an unwarranted alarm,” The Lancet, vol. 374, no. 9689, pp. 511–513, 2009.
[148]  X. Du, R. Zhang, Y. Xue, et al., “Insulin glargine and risk of cancer: a meta-analysis,” The International Journal of Biological Markers, vol. 27, no. 3, pp. 241–246, 2012.
[149]  J. A. Davila, L. Rabeneck, D. H. Berger, and H. B. El-Serag, “Postoperative 30-day mortality following surgical resection for colorectal cancer in veterans: changes in the right direction,” Digestive Diseases and Sciences, vol. 50, no. 9, pp. 1722–1728, 2005.
[150]  S. A. Little, W. R. Jarnagin, R. P. DeMatteo, L. H. Blumgart, and Y. Fong, “Diabetes is associated with increased perioperative mortality but equivalent long-term outcome after hepatic resection for colorectal cancer,” Journal of Gastrointestinal Surgery, vol. 6, no. 1, pp. 88–94, 2002.
[151]  H. Abunasra, S. Lewis, L. Beggs, J. Duffy, D. Beggs, and E. Morgan, “Predictors of operative death after oesophagectomy for carcinoma,” The British Journal of Surgery, vol. 92, no. 8, pp. 1029–1033, 2005.
[152]  R. C. Karl, R. Schreiber, D. Boulware, S. Baker, and D. Coppola, “Factors affecting morbidity, mortality, and survival in patients undergoing ivor lewis esophagogastrectomy,” Annals of Surgery, vol. 231, no. 5, pp. 635–643, 2000.
[153]  B. B. Barone, H.-C. Yeh, C. F. Snyder et al., “Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 300, no. 23, pp. 2754–2764, 2008.
[154]  A. G. Renehan, H.-C. Yeh, J. A. Johnson, S. H. Wild, E. A. M. Gale, and H. M?ller, “Diabetes and cancer (2): evaluating the impact of diabetes on mortality in patients with cancer,” Diabetologia, vol. 55, no. 6, pp. 1619–1632, 2012.
[155]  X. H. Zhou, Q. Qiao, B. Zethelius et al., “Diabetes, prediabetes and cancer mortality,” Diabetologia, vol. 53, no. 9, pp. 1867–1876, 2010.
[156]  S. R. K. Seshasai, S. Kaptoge, A. Thompson et al., “Diabetes mellitus, fasting glucose, and risk of cause-specific death,” The New England Journal of Medicine, vol. 364, no. 9, pp. 829–841, 2011.
[157]  L. V. van de Poll-Franse, S. Houterman, M. L. G. Janssen-Heijnen, M. W. Dercksen, J. W. W. Coebergh, and H. R. Haak, “Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population based analysis,” International Journal of Cancer, vol. 120, no. 9, pp. 1986–1992, 2007.
[158]  A. V. D'Amico, M. H. Braccioforte, B. J. Moran, and M.-H. Chen, “Causes of death in men with prevalent diabetes and newly diagnosed high-versus favorable-risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 5, pp. 1329–1337, 2010.
[159]  S. T. Fleming, H. G. Pursley, B. Newman, D. Pavlov, and K. Chen, “Comorbidity as a predictor of stage of illness for patients with breast cancer,” Medical Care, vol. 43, no. 2, pp. 132–140, 2005.
[160]  T. P. Srokowski, S. Fang, G. N. Hortobagyi, and S. H. Giordano, “Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer,” Journal of Clinical Oncology, vol. 27, no. 13, pp. 2170–2176, 2009.
[161]  C. F. Snyder, K. B. Stein, B. B. Barone et al., “Does pre-existing diabetes affect prostate cancer prognosis? A systematic review,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 1, pp. 58–64, 2010.
[162]  J. A. Meyerhardt, P. J. Catalano, D. G. Haller et al., “Impact of diabetes mellitus on outcomes in patients with colon cancer,” Journal of Clinical Oncology, vol. 21, no. 3, pp. 433–440, 2003.
[163]  J. M. Chan, D. M. Latini, J. Cowan, J. Duchane, and P. R. Carroll, “History of diabetes, clinical features of prostate cancer, and prostate cancer recurrence-data from CaPSURE (United States),” Cancer Causes & Control, vol. 16, no. 7, pp. 789–797, 2005.
[164]  P. J. Saylor and M. R. Smith, “Metabolic complications of androgen deprivation therapy for prostate cancer,” The Journal of Urology, vol. 181, no. 5, pp. 1998–2008, 2009.
[165]  J. Bellmunt, C. Szczylik, J. Feingold, A. Strahs, and A. Berkenblit, “Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features,” Annals of Oncology, vol. 19, no. 8, pp. 1387–1392, 2008.
[166]  L. J. Malizzia and A. Hsu, “Temsirolimus, an mTOR inhibitor for treatment of patients with advanced renal cell carcinoma,” Clinical Journal of Oncology Nursing, vol. 12, no. 4, pp. 639–646, 2008.
[167]  P. T. Campbell, C. C. Newton, A. V. Patel, E. J. Jacobs, and S. M. Gapstur, “Diabetes and cause-specific mortality in a prospective cohort of one million u.s. adults,” Diabetes Care, vol. 35, no. 9, pp. 1835–1844, 2012.
[168]  P. A. Sakkinen, P. Wahl, M. Cushman, M. R. Lewis, and R. P. Tracy, “Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome,” American Journal of Epidemiology, vol. 152, no. 10, pp. 897–907, 2000.
[169]  S. Tsugane and M. Inoue, “Insulin resistance and cancer: epidemiological evidence,” Cancer Science, vol. 101, no. 5, pp. 1073–1079, 2010.
[170]  P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008.
[171]  M. Prisco, G. Romano, F. Peruzzi, B. Valentinis, and R. Baserga, “Insulin and IGF-I receptors signaling in protection from apoptosis,” Hormone and Metabolic Research, vol. 31, no. 2-3, pp. 80–89, 1999.
[172]  H. M. Khandwala, I. E. Mccutcheon, A. Flyvbjerg, and K. E. Friend, “The effects of insulin-like growth factors on tumorigenesis and neoplastic growth,” Endocrine Reviews, vol. 21, no. 3, pp. 215–244, 2000.
[173]  K. Masur, C. Vetter, A. Hinz et al., “Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levels involved in tumour cell migration, adhesion and proliferation,” British Journal of Cancer, vol. 104, no. 2, pp. 345–352, 2011.
[174]  F. Frasca, G. Pandini, P. Scalia et al., “Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3278–3288, 1999.
[175]  A. Corbould, H. Zhao, S. Mirzoeva, F. Aird, and A. Dunaif, “Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome,” Diabetes, vol. 55, no. 3, pp. 751–759, 2006.
[176]  C. A. Krone and J. T. A. Ely, “Controlling hyperglycemia as an adjunct to cancer therapy,” Integrative Cancer Therapies, vol. 4, no. 1, pp. 25–31, 2005.
[177]  W. Li, Q. Ma, J. Liu, et al., “Hyperglycemia as a mechanism of pancreatic cancer metastasis,” Frontiers in Bioscience, vol. 17, pp. 1761–1774, 2012.
[178]  K. Yamasaki, Y. Hayashi, S. Okamoto, M. Osanai, and G.-H. Lee, “Insulin-independent promotion of chemically induced hepatocellular tumor development in genetically diabetic mice,” Cancer Science, vol. 101, no. 1, pp. 65–72, 2010.
[179]  S. Yamagishi, K. Nakamura, H. Inoue, S. Kikuchi, and M. Takeuchi, “Possible participation of advanced glycation end products in the pathogenesis of colorectal cancer in diabetic patients,” Medical Hypotheses, vol. 64, no. 6, pp. 1208–1210, 2005.
[180]  R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004.
[181]  M. Banerjee and M. Saxena, “Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes,” Clinica Chimica Acta, vol. 413, no. 15-16, pp. 1163–1170, 2012.
[182]  B. Arcidiacono, S. Iiritano, A. Nocera, et al., “Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms,” Experimental Diabetes Research, vol. 2012, Article ID 789174, 12 pages, 2012.
[183]  G. R. Romeo, J. Lee, and S. E. Shoelson, “Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 8, pp. 1771–1776, 2012.
[184]  S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010.
[185]  D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[186]  A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008.
[187]  F. Balkwill, “TNF-alpha in promotion and progression of cancer,” Cancer Metastasis Reviews, vol. 25, no. 3, pp. 409–416, 2006.
[188]  D. Iliopoulos, H. A. Hirsch, and K. Struhl, “An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation,” Cell, vol. 139, no. 4, pp. 693–706, 2009.
[189]  S. Ulisse, E. Baldini, S. Sorrenti, and M. D'Armiento, “The urokinase plasminogen activator system: a target for anti-cancer therapy,” Current Cancer Drug Targets, vol. 9, no. 1, pp. 32–71, 2009.
[190]  M. Karin, “Nuclear factor-kappaB in cancer development and progression,” Nature, vol. 441, no. 7092, pp. 431–436, 2006.
[191]  P. Dandona, K. Thusu, S. Cook et al., “Oxidative damage to DNA in diabetes mellitus,” The Lancet, vol. 347, no. 8999, pp. 444–445, 1996.
[192]  A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007.
[193]  M. Lorenzi, D. F. Montisano, S. Toledo, and A. Barrieux, “High glucose induces DNA damage in cultured human endothelial cells,” The Journal of Clinical Investigation, vol. 77, no. 1, pp. 322–325, 1986.
[194]  F. Turturro, E. Friday, and T. Welbourne, “Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231,” BMC Cancer, vol. 7, article 96, 2007.
[195]  R. Robertson, H. Zhou, T. Zhang, and J. S. Harmon, “Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes,” Cell Biochemistry and Biophysics, vol. 48, no. 2-3, pp. 139–146, 2007.
[196]  R. P. Robertson, J. Harmon, P. O. T. Tran, and V. Poitout, “Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes,” Diabetes, vol. 53, supplement 1, pp. S119–S124, 2004.
[197]  X. Yang, W. So, G. T. C. Ko, et al., “Independent associations between low-density lipoprotein cholesterol and cancer among patients with type 2 diabetes mellitus,” Canadian Medical Association Journal, vol. 179, no. 5, pp. 427–437, 2008.
[198]  X. Yang, R. C. W. Ma, W. Y. So et al., “Low triglyceride and nonuse of statins is associated with cancer in type 2 diabetes mellitus,” Cancer, vol. 117, no. 4, pp. 862–871, 2011.
[199]  M. Esteller, “The necessity of a human epigenome project,” Carcinogenesis, vol. 27, no. 6, pp. 1121–1125, 2006.
[200]  S. A. Ross and J. A. Milner, “Epigenetic modulation and cancer: effect of metabolic syndrome?” The American Journal of Clinical Nutrition, vol. 86, no. 3, pp. 872–877, 2007.
[201]  M. Verma, “Cancer control and prevention by nutrition and epigenetic approaches,” Antioxidants & Redox Signaling, vol. 17, no. 2, pp. 355–364, 2012.
[202]  T. N. Le, J. E. Nestler, J. F. Strauss, and E. P. Wickham, “Sex hormone-binding globulin and type 2 diabetes mellitus,” Trends in Endocrinology and Metabolism, vol. 23, no. 1, pp. 32–40, 2012.
[203]  R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers & Prevention, vol. 11, no. 12, pp. 1531–1543, 2002.
[204]  B. Bao, Z. Wang, Y. Li et al., “The complexities of obesity and diabetes with the development and progression of pancreatic cancer,” Biochimica et Biophysica Acta, vol. 1815, no. 2, pp. 135–146, 2011.
[205]  E. Br?kenhielm, N. Veitonm?ki, R. Cao, et al., “Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2476–2481, 2004.
[206]  H. S. Moon, X. Liu, J. M. Nagel, et al., “Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice,” Gut, vol. 1136, pp. 1–10, 2012.
[207]  S. S. Tworoger, A. H. Eliassen, T. Kelesidis et al., “Plasma adiponectin concentrations and risk of incident breast cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1510–1516, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133