Vitamin D deficiency is a potentially modifiable risk factor that may be targeted for breast cancer prevention and treatment. Preclinical studies support various antitumor effects of vitamin D in breast cancer. Numerous observational studies have reported an inverse association between vitamin D status, including circulating 25-hydroxyvitamin D (25(OH)D) levels, and breast cancer risk. The relationship between vitamin D and mammographic density, a strong predictor of breast cancer risk, remains unclear. Studies analyzing the link between genetic polymorphisms in vitamin D pathway genes and breast cancer incidence and prognosis have yielded inconsistent results. Vitamin D deficiency among breast cancer patients has been associated with poorer clinical outcomes and increased mortality. Despite a number of clinical trials of vitamin D supplementation, the efficacy, optimal dosage of vitamin D, and target blood level of 25(OH)D for breast cancer prevention have yet to be determined. Even with substantial literature on vitamin D and breast cancer, future studies need to focus on gaining a better understanding of the biologic effects of vitamin D in breast tissue. Despite compelling data from experimental and observational studies, there is still insufficient data from clinical trials to make recommendations for vitamin D supplementation for breast cancer prevention or treatment. 1. Introduction Breast cancer confers significant morbidity and mortality among women in the United States. Due to the magnitude of this disease, considerable research effort has been directed toward identifying breast cancer risk factors to target for prevention. However, relatively few modifiable lifestyle and environmental factors have been associated with reduced breast cancer risk. Chemoprevention refers to altering the carcinogenesis process with a drug intervention. The selective estrogen receptor modulators (SERMs), tamoxifen [1] and raloxifene [2], and aromatase inhibitor (AI), exemestane [3], have been shown to reduce breast cancer incidence. These antiestrogens are the only drugs that have been approved by the USA Food and Drug Administration for breast cancer prevention in high-risk population; however, uptake has been poor in the prevention setting. Due to serious toxicities associated with SERMs, namely, endometrial cancer and thromboembolic disease, and chronic toxicities of AIs, such as hot flashes, arthralgias, and osteoporosis, they have not gained widespread acceptance in the primary prevention setting. In addition, these antiestrogens do not lower the incidence of
References
[1]
B. Fisher, J. P. Costantino, D. L. Wickerham et al., “Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study,” Journal of the National Cancer Institute, vol. 90, no. 18, pp. 1371–1388, 1998.
[2]
V. G. Vogel, J. P. Costantino, D. L. Wickerham et al., “Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial,” Journal of the American Medical Association, vol. 295, no. 23, pp. 2727–2741, 2006.
[3]
P. E. Goss, J. N. Ingle, J. E. Ales-Martinez, et al., “Exemestane for breast-cancer prevention in postmenopausal women,” The New England Journal of Medicine, vol. 364, pp. 2381–2391, 2011.
[4]
G. P. Webb, Dietary Supplements and Functional Foods, Blackwell, Oxford, UK, 2nd edition, 2011.
[5]
F. L. Apperly, “The relation of solar radiation to cancer mortality in North America,” Cancer Research, vol. 1, pp. 191–195, 1941.
[6]
G. P. Studzinski and D. C. Moore, “Sunlight—can it prevent as well as cause cancer?” Cancer Research, vol. 55, no. 18, pp. 4014–4022, 1995.
[7]
E. D. Gorham, F. C. Garland, and C. F. Garland, “Sunlight and breast cancer incidence in the USSR,” International Journal of Epidemiology, vol. 19, no. 4, pp. 820–824, 1990.
[8]
F. C. Garland, C. F. Garland, E. D. Gorham, and J. F. Young, “Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation,” Preventive Medicine, vol. 19, no. 6, pp. 614–622, 1990.
[9]
W. J. Blot, J. F. Fraumeni, and B. J. Stone, “Geographic patterns of breast cancer in the United States,” Journal of the National Cancer Institute, vol. 59, no. 5, pp. 1407–1411, 1977.
[10]
W. Chen, M. Clements, B. Rahman, S. Zhang, Y. Qiao, and B. K. Armstrong, “Relationship between cancer mortality/incidence and ambient ultraviolet B irradiance in China,” Cancer Causes and Control, vol. 21, no. 10, pp. 1701–1709, 2010.
[11]
Institute of Medicine, Dietary Reference Intakes For Calcium and Vitamin D, National Academic Press, Washington, DC, USA, 2011.
[12]
R. R. Eitenmiller, L. Ye, and W. O. Landen, Vitamin Analysis for the Health and Food Sciences, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2008.
[13]
E. Giovannucci, “The epidemiology of vitamin D and cancer incidence and mortality: a review (United States),” Cancer Causes and Control, vol. 16, no. 2, pp. 83–95, 2005.
[14]
S. Nesby-O'Dell, K. S. Scanlon, M. E. Cogswell et al., “Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: Third National Health and Nutrition Examination Survey, 1988–1994,” American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 187–192, 2002.
[15]
E. Giovannucci, “Vitamin D status and cancer incidence and mortality,” Advances in Experimental Medicine and Biology, vol. 624, pp. 31–42, 2008.
[16]
A. Zittermann, “Vitamin D: cholecalciferol,” in Vitamins in the Prevention of Human Disease, W. Hermann and R. Obeid, Eds., pp. 363–395, De Gruyter, Homburg, Germany, 2011.
[17]
M. Hewison and J. S. Adams, “Extra-renal 1alpha-hydroxylase activity and human disease,” in Vitamin D, D. Feldman, J. W. Pike, and F. H. Glorieux, Eds., pp. 1379–1400, Elsevier, San Diego, Calif, USA, 2nd edition, 2005.
[18]
H. L. Newmark, R. P. Heaney, and P. A. Lachance, “Should calcium and vitamin D be added to the current enrichment program for cereal-grain products?” American Journal of Clinical Nutrition, vol. 80, no. 2, pp. 264–270, 2004.
[19]
G. G. Schwartz, L. W. Whitlatch, T. C. Chen, B. L. Lokeshwar, and M. F. Holick, “Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25- hydroxyvitamin D3,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 5, pp. 391–395, 1998.
[20]
M. J. Larriba, N. Valle, S. Alvarez, and A. Munoz, “Vitamin D3 and colorectal cancer,” in Hormonal Carcinovenesis V, J. J. Li, S. A. Li, S. Mohla, H. Rochefort, and T. Maudelonde, Eds., pp. 271–280, Springer, New York, NY, USA, 2008.
[21]
D. Feldman, P. J. Malloy, A. V. Krishnan, and E. Balint, “Vitamin D: biology, action, and clinical implications,” in Osteoporosis, R. Marcus, D. Feldman, D. A. Nelson, and C. J. Rosen, Eds., Academic, San Diego, Calif, USA, 3rd edition, 2008.
[22]
S. Swami, A. V. Krishnan, D. M. Peehl, and D. Feldman, “Genistein potentiates the growth inhibitory effects of 1,25- dihydroxyvitamin D3 in DU145 human prostate cancer cells: role of the direct inhibition of CYP24 enzyme activity,” Molecular and Cellular Endocrinology, vol. 241, no. 1-2, pp. 49–61, 2005.
[23]
S. Masuda and G. Jones, “Promise of vitamin D analogues in the treatment of hyperproliferative conditions,” Molecular Cancer Therapeutics, vol. 5, no. 4, pp. 797–808, 2006.
[24]
C. Carlberg and T. W. Dunlop, “The impact of chromatin organization of vitamin D target genes,” Anticancer Research, vol. 26, no. 4, pp. 2637–2645, 2006.
[25]
K. W. Colston and C. M. Hansen, “Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer,” Endocrine-Related Cancer, vol. 9, no. 1, pp. 45–59, 2002.
[26]
J. Welsh, “Vitamin D and breast cancer: insights from animal models,” The American Journal of Clinical Nutrition, vol. 80, pp. 1721S–1724S, 2004.
[27]
D. Matthews, E. LaPorta, G. M. Zinser, C. J. Narvaez, and J. Welsh, “Genomic vitamin D signaling in breast cancer: insights from animal models and human cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 121, no. 1-2, pp. 362–367, 2010.
[28]
T. Cordes, D. Fischer, M. Thill, S. Becker, M. Friedrich, and D. Salehin, “Vitamin D-1α-hydroxylase and vitamin D-24-hydroxylase in benign and malign breast tissue,” European Journal of Gynaecological Oncology, vol. 31, no. 2, pp. 151–155, 2010.
[29]
N. Lopes, B. Sousa, D. Martins et al., “Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions,” BMC Cancer, vol. 10, article 483, 2010.
[30]
M. J. Larriba and A. Munoz, “Mechanisms of resistance to vitamin D action in human cancer cells,” in Vitamin D: Physiology, Molecular Biology, and Clinical Applications, M. F. Holick, Ed., pp. 325–333, Humana Press, New York, NY, USA, 2010.
[31]
J. Thorne and M. J. Campbell, “The molecular cancer biology of the VDR,” in Vitamin D and Cancer, D. L. Trump and C. S. Johnson, Eds., pp. 25–52, Springer, New York, NY, USA, 2011.
[32]
M. D. Althuis, J. H. Fergenbaum, M. Garcia-Closas, L. A. Brinton, M. P. Madigan, and M. E. Sherman, “Etiology of hormone receptor-defined breast cancer: a systematic review of the literature,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 10, pp. 1558–1568, 2004.
[33]
X. Peng, M. Hawthorne, A. Vaishnav, R. St-Arnaud, and R. G. Mehta, “25-Hydroxyvitamin D3 is a natural chemopreventive agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 31–41, 2009.
[34]
S. Swami, A. V. Krishnan, J. Y. Wang et al., “Dietary vitamin D(3) and 1, 25-dihydroxyvitamin D(3) (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer,” in Endocrinology, vol. 153, pp. 2576–2587, 2012.
[35]
H. J. Lee, S. Paul, N. Atalla et al., “Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity,” Cancer Prevention Research, vol. 1, no. 6, pp. 476–484, 2008.
[36]
J. Welsh, J. A. Wietzke, G. M. Zinser, B. Byrne, K. Smith, and C. J. Narvaez, “Vitamin D-3 receptor as a target for breast cancer prevention,” Journal of Nutrition, vol. 133, no. 7, pp. 2425S–2433S, 2003.
[37]
K. K. Deeb, D. L. Trump, and C. S. Johnson, “Vitamin D signalling pathways in cancer: potential for anticancer therapeutics,” Nature Reviews Cancer, vol. 7, no. 9, pp. 684–700, 2007.
[38]
A. Stoica, M. Saceda, A. Fakhro, H. B. Solomon, B. D. Fenster, and M. B. Martin, “Regulation of estrogen receptor-alpha gene expression by 1, 25-dihydroxyvitamin D in MCF-7 cells,” in Journal of Cellular Biochemistry, vol. 75, pp. 640–651, 1999.
[39]
S. Swami, A. V. Krishnan, and D. Feldman, “1α,25-Dihydroxyvitamin D3 down-regulates estrogen receptor abundance and suppresses estrogen actions in MCF-7 human breast cancer cells,” Clinical Cancer Research, vol. 6, no. 8, pp. 3371–3379, 2000.
[40]
A. V. Krishnan, S. Swami, L. Peng, J. Wang, J. Moreno, and D. Feldman, “Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy,” Endocrinology, vol. 151, no. 1, pp. 32–42, 2010.
[41]
H. Matsumoto, Y. Iino, Y. Koibuchi et al., “Antitumor effect of 22-oxacalcitriol on estrogen receptor-negative MDA-MB-231 tumors in athymic mice,” Oncology Reports, vol. 6, no. 2, pp. 349–352, 1999.
[42]
E. A. Hussain, R. R. Mehta, R. Ray, T. K. Das Gupta, and R. G. Mehta, “Efficacy and mechanism of action of 1alpha-hydroxy-24-ethyl-cholecalciferol (1alpha[OH]D5) in breast cancer prevention and therapy,” Recent Results in Cancer Research, vol. 164, pp. 393–411, 2003.
[43]
A. V. Krishnan and D. Feldman, “Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D,” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 311–336, 2011.
[44]
J. Moreno, A. V. Krishnan, S. Swami, L. Nonn, D. M. Peehl, and D. Feldman, “Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells,” Cancer Research, vol. 65, no. 17, pp. 7917–7925, 2005.
[45]
A. M. H. Brodie, Q. Lu, B. J. Long et al., “Aromatase and COX-2 expression in human breast cancers,” Journal of Steroid Biochemistry and Molecular Biology, vol. 79, no. 1-5, pp. 41–47, 2001.
[46]
R. W. Brueggemeier, A. L. Quinn, M. L. Parrett, F. S. Joarder, R. E. Harris, and F. M. Robertson, “Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens,” Cancer Letters, vol. 140, no. 1-2, pp. 27–35, 1999.
[47]
M. Ben-Shoshan, S. Amir, D. T. Dang, L. H. Dang, Y. Weisman, and N. J. Mabjeesh, “1α,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1433–1439, 2007.
[48]
I. Chung, G. Han, M. Seshadri et al., “Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo,” Cancer Research, vol. 69, no. 3, pp. 967–975, 2009.
[49]
D. J. Mantell, P. E. Owens, N. J. Bundred, E. B. Mawer, and A. E. Canfield, “1α,25-Dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo,” Circulation Research, vol. 87, no. 3, pp. 214–220, 2000.
[50]
Y. Ma, W. D. Yu, P. A. Hershberger et al., “1α,25-Dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model,” Molecular Cancer Therapeutics, vol. 7, no. 9, pp. 3047–3055, 2008.
[51]
M. Chaudhary, S. Sundaram, C. Gennings, H. Carter, and D. A. Gewirtz, “The vitamin D3 analog, ILX-23-7553, enhances the response to Adriamycin and irradiation in MCF-7 breast tumor cells,” Cancer Chemotherapy and Pharmacology, vol. 47, no. 5, pp. 429–436, 2001.
[52]
D. L. Trump, K. K. Deeb, and C. S. Johnson, “Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy,” Cancer Journal, vol. 16, no. 1, pp. 1–9, 2010.
[53]
H. Van Der Rhee, J. W. Coebergh, and E. De Vries, “Sunlight, vitamin D and the prevention of cancer: a systematic review of epidemiological studies,” European Journal of Cancer Prevention, vol. 18, no. 6, pp. 458–475, 2009.
[54]
A. Simard, J. Vobecky, and J. S. Vobecky, “Vitamin D deficiency and cancer of the breast: an unprovocative ecological hypothesis,” Canadian Journal of Public Health, vol. 82, no. 5, pp. 300–303, 1991.
[55]
N. Potischman, C. A. Swanson, R. J. Coates et al., “Intake of food groups and associated micronutrients in relation to risk of early-stage breast cancer,” in International Journal of Cancer, vol. 82, pp. 315–321, 1999.
[56]
F. Levi, C. Pasche, F. Lucchini, and C. L. Vecchia, “Dietary intake of selected micronutrients and breast-cancer risk,” International Journal of Cancer, vol. 91, no. 2, pp. 260–263, 2001.
[57]
S. Abbas, J. Linseisen, and J. Chang-Claude, “Dietary vitamin D and calcium intake and premenopausal breast cancer risk in a german case-control study,” Nutrition and Cancer, vol. 59, no. 1, pp. 54–61, 2007.
[58]
M. Rossi, J. K. McLaughlin, P. Lagiou et al., “Vitamin D intake and breast cancer risk: a case-control study in Italy,” Annals of Oncology, vol. 20, no. 2, pp. 374–378, 2009.
[59]
L. N. Anderson, M. Cotterchio, R. Vieth, and J. A. Knight, “Vitamin D and calcium intakes and breast cancer risk in pre- and postmenopausal women,” American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1699–1707, 2010.
[60]
J. A. Knight, M. Lesosky, H. Barnett, J. M. Raboud, and R. Vieth, “Vitamin D and reduced risk of breast cancer: a population-based case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 3, pp. 422–429, 2007.
[61]
T. Kawase, K. Matsuo, T. Suzuki et al., “Association between vitamin D and calcium intake and breast cancer risk according to menopausal status and receptor status in Japan,” Cancer Science, vol. 101, no. 5, pp. 1234–1240, 2010.
[62]
M. S. Lee, Y. C. Huang, M. L. Wahlqvist et al., “Vitamin d decreases risk of breast cancer in premenopausal women of normal weight in subtropical Taiwan,” Journal of Epidemiology, vol. 21, no. 2, pp. 87–94, 2011.
[63]
K. M. Blackmore, M. Lesosky, H. Barnett, J. M. Raboud, R. Vieth, and J. A. Knight, “Vitamin D from dietary intake and sunlight exposure and the risk of hormone-receptor-defined breast cancer,” American Journal of Epidemiology, vol. 168, no. 8, pp. 915–924, 2008.
[64]
E. M. John, G. G. Schwartz, D. M. Dreon, and J. Koo, “Vitamin D and breast cancer risk: The NHANES I epidemiologic follow-up study, 1971–1975 to 1992,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 5, pp. 399–406, 1999.
[65]
M. H. Shin, M. D. Holmes, S. E. Hankinson, K. Wu, G. A. Colditz, and W. C. Willett, “Intake of dairy products, calcium, and vitamin D and risk of breast cancer,” Journal of the National Cancer Institute, vol. 94, no. 17, pp. 1301–1311, 2002.
[66]
A. Lindsay Frazier, L. Li, E. Cho, W. C. Willett, and G. A. Colditz, “Adolescent diet and risk of breast cancer,” Cancer Causes and Control, vol. 15, no. 1, pp. 73–82, 2004.
[67]
M. L. McCullough, C. Rodriguez, W. R. Diver et al., “Dairy, calcium, and vitamin D intake and postmenopausal breast cancer risk in the cancer prevention study II nutrition cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2898–2904, 2005.
[68]
J. Lin, J. E. Manson, I. M. Lee, N. R. Cook, J. E. Buring, and S. M. Zhang, “Intakes of calcium and vitamin D and breast cancer risk in women,” Archives of Internal Medicine, vol. 167, no. 10, pp. 1050–1059, 2007.
[69]
K. Robien, G. J. Cutler, and D. Lazovich, “Vitamin D intake and breast cancer risk in postmenopausal women: The Iowa Women's Health Study,” Cancer Causes and Control, vol. 18, no. 7, pp. 775–782, 2007.
[70]
H. Kuper, L. Yang, S. Sandin, M. Lof, H. O. Adami, and E. Weiderpass, “Prospective study of solar exposure, dietary vitamin D intake, and risk of breast cancer among middle-aged women,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 9, pp. 2558–2561, 2009.
[71]
K. Edvardsen, M. B. Veier?d, M. Brustad, T. Braaten, O. Engelsen, and E. Lund, “Vitamin D-effective solar UV radiation, dietary vitamin D and breast cancer risk,” International Journal of Cancer, vol. 128, no. 6, pp. 1425–1433, 2011.
[72]
C. A. Gonzalez, E. Riboli, K. Overvad et al., “Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study,” European Journal of Cancer, vol. 46, no. 14, pp. 2555–2562, 2010.
[73]
P. Engel, G. Fagherazzi, S. Mesrine, M. C. Boutron-Ruault, and F. Clavel-Chapelon, “Joint effects of dietary vitamin d and sun exposure on breast cancer risk: results from the French E3N cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 187–195, 2011.
[74]
P. Chen, P. Hu, D. Xie, Y. Qin, F. Wang, and H. Wang, “Meta-analysis of vitamin D, calcium and the prevention of breast cancer,” Breast Cancer Research and Treatment, vol. 121, no. 2, pp. 469–477, 2010.
[75]
H. Reichel, H. P. Koeffler, and A. W. Normal, “The role of the vitamin D endocrine system in health and disease,” The New England Journal of Medicine, vol. 320, no. 15, pp. 980–991, 1989.
[76]
M. F. Holick, “Vitamin D status: measurement, interpretation, and clinical application,” Annals of Epidemiology, vol. 19, no. 2, pp. 73–78, 2009.
[77]
L. Yin, N. Grandi, E. Raum, U. Haug, V. Arndt, and H. Brenner, “Meta-analysis: serum vitamin D and breast cancer risk,” European Journal of Cancer, vol. 46, no. 12, pp. 2196–2205, 2010.
[78]
S. Gandini, M. Boniol, J. Haukka et al., “Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma,” International Journal of Cancer, vol. 128, no. 6, pp. 1414–1424, 2011.
[79]
S. Abbas, J. Linseisen, T. Slanger et al., “Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer—results of a large case-control study,” Carcinogenesis, vol. 29, no. 1, pp. 93–99, 2008.
[80]
S. Abbas, A. Nieters, J. Linseisen et al., “Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk,” Breast Cancer Research, vol. 10, no. 2, article no. R31, 2008.
[81]
S. Abbas, J. Linseisen, T. Slanger et al., “The Gc2 allele of the vitamin D binding protein is associated with a decreased postmenopausal breast cancer risk, independent of the vitamin D status,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1339–1343, 2008.
[82]
D. M. Freedman, S. C. Chang, R. T. Falk et al., “Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 4, pp. 889–894, 2008.
[83]
S. Abbas, J. Chang-Claude, and J. Linseisen, “Plasma 25-hydroxyvitamin D and premenopausal breast cancer risk in a German case-control study,” International Journal of Cancer, vol. 124, no. 1, pp. 250–255, 2009.
[84]
K. D. Crew, E. Shane, S. Cremers, D. J. McMahon, D. Irani, and D. L. Hershman, “High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 13, pp. 2151–2156, 2009.
[85]
M. L. McCullough, V. L. Stevens, R. Patel et al., “Serum 25-hydroxyvitamin D concentrations and postmenopausal breast cancer risk: a nested case control study in the Cancer Prevention Study-II Nutrition Cohort,” Breast Cancer Research, vol. 11, no. 4, article no. R64, 2009.
[86]
L. Rejnmark, A. Tietze, P. Vestergaard et al., “Reduced prediagnostic 25-hydroxyvitamin D levels in women with breast cancer: a nested case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 10, pp. 2655–2660, 2009.
[87]
M. Almquist, A. G. Bondeson, L. Bondeson, J. Malm, and J. Banjer, “Serum levels of vitamin D, PTH and calcium and breast cancer risk a prospective nested case-control study,” International Journal of Cancer, vol. 127, no. 9, pp. 2159–2168, 2010.
[88]
P. Engel, G. Fagherazzi, A. Boutten et al., “Serum 25(OH) vitamin D and risk of breast cancer: a nested case-control study from the French E3N cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 9, pp. 2341–2350, 2010.
[89]
K. D. Crew, M. D. Gammon, S. E. Steck, et al., “Association between plasma 25-hydroxyvitamin D and breast cancer risk,” in Cancer Prevention Research, vol. 2, pp. 598–604, 2009.
[90]
R. T. Chlebowski, K. C. Johnson, C. Kooperberg et al., “Calcium plus vitamin D supplementation and the risk of breast cancer,” Journal of the National Cancer Institute, vol. 100, no. 22, pp. 1581–1591, 2008.
[91]
W. B. Grant, “Effect of interval between serum draw and follow-up period on relative risk of cancer incidence with respect to 25-hydroxyvitamin D level: implications for meta-analyses and setting vitamin D guidelines,” Dermatoendocrinol, vol. 3, pp. 199–204, 2011.
[92]
J. N. Hofmann, K. Yu, R. L. Horst, R. B. Hayes, and M. P. Purdue, “Long-term variation in serum 25-hydroxyvitamin d concentration among participants in the prostate, lung, colorectal, and ovarian cancer screening trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 4, pp. 927–931, 2010.
[93]
R. Jorde, M. Sneve, M. Hutchinson, N. Emaus, Y. Figenschau, and G. Grimnes, “Tracking of serum 25-Hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study,” American Journal of Epidemiology, vol. 171, no. 8, pp. 903–908, 2010.
[94]
J. M. Lappe, D. Travers-Gustafson, K. M. Davies, R. R. Recker, and R. P. Heaney, “Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial,” American Journal of Clinical Nutrition, vol. 85, no. 6, pp. 1586–1591, 2007.
[95]
W. Zhou, R. S. Heist, G. Liu et al., “Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 479–485, 2007.
[96]
E. R. Bertone-Johnson, W. Y. Chen, M. F. Holick et al., “Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 8, pp. 1991–1997, 2005.
[97]
M. Chung, E. M. Balk, M. Brendel et al., “Vitamin D and calcium: a systematic review of health outcomes,” Evidence Report, no. 183, pp. 1–420, 2009.
[98]
International Agency for Research on Cancer, Vitamin D and Cancer—A Report of the IARC Working Group on Vitamin D, World Health Organization Press, Lyon, France, 2008.
[99]
O. P. Heinonen and D. Albanes, “The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1029–1035, 1994.
[100]
D. Albanes, O. P. Heinonen, P. R. Taylor et al., “α-tocopherol and β-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base- line characteristics and study compliance,” Journal of the National Cancer Institute, vol. 88, no. 21, pp. 1560–1570, 1996.
[101]
G. S. Omenn, G. Goodman, M. Thornquist et al., “The β-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers,” Cancer Research, vol. 54, no. 7, pp. 2038s–2043s, 1994.
[102]
B. F. Cole, J. A. Baron, R. S. Sandler et al., “Folic acid for the prevention of colorectal adenomas: a randomized clinical trial,” Journal of the American Medical Association, vol. 297, no. 21, pp. 2351–2359, 2007.
[103]
E. A. Klein, I. M. Thompson Jr., C. M. Tangen, et al., “Vitamin E and the risk of prostate cancer: the selenium and vitamin E Cancer Prevention Trial (SELECT),” The Journal of the American Medical Association, vol. 306, pp. 1549–1556, 2011.
[104]
V. A. McCormack and I. Dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 6, pp. 1159–1169, 2006.
[105]
N. F. Boyd, H. Guo, L. J. Martin et al., “Mammographic density and the risk and detection of breast cancer,” The New England Journal of Medicine, vol. 356, no. 3, pp. 227–236, 2007.
[106]
N. F. Boyd, G. A. Lockwood, J. W. Byng, D. L. Tritchler, and M. J. Yaffe, “Mammographic densities and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 12, pp. 1133–1144, 1998.
[107]
N. F. Boyd, J. W. Byng, R. A. Jong et al., “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” Journal of the National Cancer Institute, vol. 87, no. 9, pp. 670–675, 1995.
[108]
P. Tehranifar, D. Reynolds, J. Flom et al., “Reproductive and menstrual factors and mammographic density in African American, Caribbean, and white women,” Cancer Causes and Control, vol. 22, no. 4, pp. 599–610, 2011.
[109]
J. Cuzick, J. Warwick, E. Pinney et al., “Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study,” Journal of the National Cancer Institute, vol. 103, no. 9, pp. 744–752, 2011.
[110]
L. Yaghjyan, G. A. Colditz, and B. Drake, “Vitamin D and mammographic breast density: a systematic review,” Cancer Causes and Control, vol. 23, pp. 1–13, 2012.
[111]
J. A. Knight, C. M. Vachon, R. A. Vierkant, R. Vieth, J. R. Cerhan, and T. A. Sellers, “No association between 25-hydroxyvitamin D and mammographic density,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1988–1992, 2006.
[112]
J. Brisson, S. Bérubé, C. Diorio, M. Sinotte, M. Pollak, and B. Masse, “Synchronized seasonal variations of mammographic breast density and plasma 25-hydroxyvitamin D,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 5, pp. 929–933, 2007.
[113]
A. K. Green, S. E. Hankinson, E. R. Bertone-Johnson, and R. M. Tamimi, “Mammographic density, plasma vitamin D levels and risk of breast cancer in postmenopausal women,” International Journal of Cancer, vol. 127, no. 3, pp. 667–674, 2010.
[114]
W. Chai, G. Maskarinec, and R. V. Cooney, “Serum 25-hydroxyvitamin D levels and mammographic density among premenopausal women in a multiethnic population,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 652–654, 2010.
[115]
M. L. Neuhouser, L. Bernstein, B. W. Hollis et al., “Serum vitamin D and breast density in breast cancer survivors,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 2, pp. 412–417, 2010.
[116]
C. M. Vachon, L. H. Kushi, J. R. Cerhan, C. C. Kuni, and T. A. Sellers, “Association of diet and mammographic breast density in the Minnesota breast cancer family cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 2, pp. 151–160, 2000.
[117]
S. Bérubé, C. Diorio, B. Masse et al., “Vitamin D and calcium intakes from food or supplements and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 7, pp. 1653–1659, 2005.
[118]
C. Diorio, S. Bérubé, C. Byrne et al., “Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density,” Cancer Research, vol. 66, no. 1, pp. 588–597, 2006.
[119]
L. A. Colangelo, B. C. H. Chiu, P. Lopez et al., “A pilot study of vitamin D, calcium, and percent breast density in Hispanic women,” Nutrition Research, vol. 26, no. 1, pp. 11–15, 2006.
[120]
C. A. Thomson, L. A. Arendell, R. L. Bruhn et al., “Pilot study of dietary influences on mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white women,” Menopause, vol. 14, no. 2, pp. 243–250, 2007.
[121]
E. R. Bertone-Johnson, R. T. Chlebowski, J. E. Manson et al., “Dietary vitamin D and calcium intake and mammographic density in postmenopausal women,” Menopause, vol. 17, no. 6, pp. 1152–1160, 2010.
[122]
M. Tseng, C. Byrne, K. A. Evers, and M. B. Daly, “Dietary intake and breast density in high-risk women: a cross-sectional study,” Breast Cancer Research, vol. 9, no. 5, article R72, 2007.
[123]
G. Mishra, V. McCormack, D. Kuh, R. Hardy, A. Stephen, and I. Dos Santos Silva, “Dietary calcium and vitamin D intakes in childhood and throughout adulthood and mammographic density in a British birth cohort,” British Journal of Cancer, vol. 99, no. 9, pp. 1539–1543, 2008.
[124]
G. Masala, D. Ambrogetti, M. Assedi, D. Giorgi, M. R. Del Turco, and D. Palli, “Dietary and lifestyle determinants of mammographic breast density: a longitudinal study in a Mediterranean population,” International Journal of Cancer, vol. 118, no. 7, pp. 1782–1789, 2006.
[125]
S. A. Qureshi, E. Couto, M. Hilsen, S. Hofvind, A. H. Wu, and G. Ursin, “Mammographic density and intake of selected nutrients and vitamins in Norwegian women,” Nutrition and Cancer, vol. 63, pp. 1011–1020, 2011.
[126]
B. L. Sprague, A. Trentham-Dietz, R. E. Gangnon, et al., “The vitamin D pathway and mammographic breast density among postmenopausal women,” Breast Cancer Research and Treatment, vol. 131, pp. 255–265, 2012.
[127]
T. J. Key, P. N. Appleby, G. K. Reeves et al., “Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women,” Journal of the National Cancer Institute, vol. 95, no. 16, pp. 1218–1226, 2003.
[128]
J. Wortsman, L. Y. Matsuoka, T. C. Chen, Z. Lu, and M. F. Holick, “Decreased bioavailability of vitamin D in obesity,” American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 690–693, 2000.
[129]
Z. Lagunova, A. C. Porojnicu, W. B. Grant, ?. Bruland, and J. E. Moan, “Obesity and increased risk of cancer: does decrease of serum 25-hydroxyvitamin D level with increasing body mass index explain some of the association?” Molecular Nutrition and Food Research, vol. 54, no. 8, pp. 1127–1133, 2010.
[130]
E. Amir, R. S. Cecchini, P. A. Ganz, et al., “25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1,” Breast Cancer Research and Treatment, vol. 133, pp. 1077–1088, 2012.
[131]
E. R. Bertone-Johnson, A. McTiernan, C. A. Thomson, et al., “Vitamin D and calcium supplementation and one-year change in mammographic density in the women's health initiative calcium and vitamin D trial,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, pp. 462–473, 2012.
[132]
R. R. Buras, L. M. Schumaker, F. Davoodi et al., “Vitamin D receptors in breast cancer cells,” Breast Cancer Research and Treatment, vol. 31, no. 2-3, pp. 191–202, 1994.
[133]
N. J. Rukin and R. C. Strange, “What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk?” Nutrition Reviews, vol. 65, no. 8, pp. S96–S101, 2007.
[134]
A. G. Uitterlinden, Y. Fang, J. B. J. Van Meurs, H. A. P. Pols, and J. P. T. M. Van Leeuwen, “Genetics and biology of vitamin D receptor polymorphisms,” Gene, vol. 338, no. 2, pp. 143–156, 2004.
[135]
L. C. Lowe, M. Guy, J. L. Mansi et al., “Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population,” European Journal of Cancer, vol. 41, no. 8, pp. 1164–1169, 2005.
[136]
W. Y. Chen, E. R. Bertone-Johnson, D. J. Hunter, W. C. Willett, and S. E. Hankinson, “Associations between polymorphisms in the vitamin D receptor and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 10, pp. 2335–2339, 2005.
[137]
S. I. Berndt, J. L. Dodson, W. Y. Huang, and K. K. Nicodemus, “A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk,” Journal of Urology, vol. 175, no. 5, pp. 1613–1623, 2006.
[138]
H. Arai, K. I. Miyamoto, Y. Taketani et al., “A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women,” Journal of Bone and Mineral Research, vol. 12, no. 6, pp. 915–921, 1997.
[139]
M. Guy, L. C. Lowe, D. Bretherton-Watt et al., “Vitamin D receptor gene polymorphisms and breast cancer risk,” Clinical Cancer Research, vol. 10, no. 16, pp. 5472–5481, 2004.
[140]
D. Bretherton-Watt, R. Given-Wilson, J. L. Mansi, V. Thomas, N. Carter, and K. W. Colston, “Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population,” British Journal of Cancer, vol. 85, no. 2, pp. 171–175, 2001.
[141]
S. A. Ingles, D. G. Garcia, W. Wang et al., “Vitamin D receptor genotype and breast cancer in Latinas (United States),” Cancer Causes and Control, vol. 11, no. 1, pp. 25–30, 2000.
[142]
J. E. Curran, T. Vaughan, R. A. Lea, S. R. Weinstein, N. A. Morrison, and L. R. Griffiths, “Association of A vitamin D receptor polymorphism with sporadic breast cancer development,” International Journal of Cancer, vol. 83, pp. 723–726, 1999.
[143]
E. M. John, G. G. Schwartz, J. Koo, W. Wang, and S. A. Ingles, “Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population,” American Journal of Epidemiology, vol. 166, no. 12, pp. 1409–1419, 2007.
[144]
M. L. McCullough, V. L. Stevens, W. R. Diver et al., “Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: A Nested Case-Control Study,” Breast Cancer Research, vol. 9, no. 1, article R9, 2007.
[145]
M. Guy, L. C. Lowe, D. Bretherton-Watt, J. L. Mansi, and K. W. Colston, “Approaches to evaluating the association of vitamin D receptor gene polymorphisms with breast cancer risk,” Recent Results in Cancer Research, vol. 164, pp. 43–54, 2003.
[146]
S. Raimondi, H. Johansson, P. Maisonneuve, and S. Gandini, “Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk,” Carcinogenesis, vol. 30, no. 7, pp. 1170–1180, 2009.
[147]
M. L. Slattery, “Vitamin D receptor gene (VDR) associations with cancer,” Nutrition Reviews, vol. 65, no. 8, pp. S102–S104, 2007.
[148]
L. K. Durrin, R. W. Haile, S. A. Ingles, and G. A. Coetzee, “Vitamin D receptor 3'-untranslated region polymorphisms: lack of effect on mRNA stability,” Biochimica et Biophysica Acta, vol. 1453, no. 3, pp. 311–320, 1999.
[149]
G. Kerr Whitfield, L. S. Remus, P. W. Jurutka et al., “Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene,” Molecular and Cellular Endocrinology, vol. 177, no. 1-2, pp. 145–159, 2001.
[150]
B. Trabert, K. E. Malone, J. R. Daling et al., “Vitamin D receptor polymorphisms and breast cancer risk in a large population-based case-control study of Caucasian and African-American women,” Breast Cancer Research, vol. 9, no. 6, article R84, 2007.
[151]
M. Ruggiero, S. Pacini, S. Aterini, C. Fallai, C. Ruggiero, and P. Pacini, “Vitamin D receptor gene polymorphism is associated with metastatic breast cancer,” Oncology Research, vol. 10, no. 1, pp. 43–46, 1998.
[152]
K. K?stner, N. Denzer, C. S. L. Müller, R. Klein, W. Tilgen, and J. Reichrath, “The relevance of Vitamin D Receptor (VDR) gene polymorphisms for cancer: a review of the literature,” Anticancer Research, vol. 29, no. 9, pp. 3511–3536, 2009.
[153]
N. A. Morrison, Jian Cheng Qi, A. Tokita et al., “Prediction of bone density from vitamin D receptor alleles,” Nature, vol. 367, no. 6460, pp. 284–287, 1994.
[154]
F. G. Hustmyer, H. F. DeLuca, and M. Peacock, “Apal, Bsml, EcoRV and Taql polymorphisms at the human vitamin D receptor gene locus in Caucasians, Blacks and Asians,” Human Molecular Genetics, vol. 2, no. 4, article 487, 1993.
[155]
J. Ma, M. J. Stampfer, P. H. Gann et al., “Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 5, pp. 385–390, 1998.
[156]
P. Sillanp??, A. Hirvonen, V. Kataja et al., “Vitamin D receptor gene polymorphism as an important modifier of positive family history related breast cancer risk,” Pharmacogenetics, vol. 14, no. 4, pp. 239–245, 2004.
[157]
N. Buyru, A. Tezol, E. Yosunkaya-Fenerci, and N. Dalay, “Vitamin D receptor gene polymorphisms in breast cancer,” Experimental and Molecular Medicine, vol. 35, no. 6, pp. 550–555, 2003.
[158]
P. A. Newcomb, H. Kim, A. Trentham-Dietz, F. Farin, D. Hunter, and K. M. Egan, “Vitamin D receptor polymorphism and breast cancer risk,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, pp. 1503–1504, 2002.
[159]
M. F. Hou, Y. C. Tien, G. T. Lin et al., “Association of vitamin D receptor gene polymorphism with sporadic breast cancer in Taiwanese patients,” Breast Cancer Research and Treatment, vol. 74, no. 1, pp. 1–7, 2002.
[160]
A. M. Dunning, S. McBride, J. Gregory et al., “No association between androgen or vitamin D receptor gene polymorphisms and risk of breast cancer,” Carcinogenesis, vol. 20, no. 11, pp. 2131–2135, 1999.
[161]
A. C. Lundin, P. S?derkvist, B. Eriksson, M. Bergman-Jungestr?m, and S. Wingren, “Association of breast cancer progression with a vitamin D receptor gene polymorphism,” Cancer Research, vol. 59, no. 10, pp. 2332–2334, 1999.
[162]
C. Diorio, M. Sinotte, J. Brisson, S. Bérube, and M. Pollak, “Vitamin D pathway polymorphisms in relation to mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 9, pp. 2505–2508, 2008.
[163]
H. Li, M. J. Stampfer, J. B. W. Hollis et al., “A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer,” PLoS Medicine, vol. 4, no. 3, article e103, 2007.
[164]
K. D. Crew, M. D. Gammon, D. L. Hershman, et al., Low Serum 25-Hydroxy Vitamin D and Vitamin D Receptor Polymorphisms are Associated with Increased Breast Cancer Risk, American Society for Bone and Mineral Research, Montreal, Canada, 2008.
[165]
E. M. Colin, A. E. A. M. Weel, A. G. Uitterlinden et al., “Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3,” Clinical Endocrinology, vol. 52, no. 2, pp. 211–216, 2000.
[166]
P. W. Jurutka, L. S. Remus, G. K. Whitfield et al., “The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB,” Molecular Endocrinology, vol. 14, no. 3, pp. 401–420, 2000.
[167]
A. G. Uitterlinden, Y. Fang, J. B. J. Van Meurs, H. Van Leeuwen, and H. A. P. Pols, “Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states,” Journal of Steroid Biochemistry and Molecular Biology, vol. 89-90, pp. 187–193, 2004.
[168]
J. M. Zmuda, J. A. Cauley, and R. E. Ferrell, “Molecular epidemiology of vitamin D receptor gene variants,” Epidemiologic Reviews, vol. 22, no. 2, pp. 203–217, 2000.
[169]
T. E. Robsahm, S. Tretli, A. Dahlback, and J. Moan, “Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway),” Cancer Causes and Control, vol. 15, no. 2, pp. 149–158, 2004.
[170]
M. L. Neuhouser, B. Sorensen, B. W. Hollis et al., “Vitamin D insufficiency in a multiethnic cohort of breast cancer survivors,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 133–139, 2008.
[171]
P. G. Vashi, K. Trukova, C. A. Lammersfeld, D. P. Braun, and D. Gupta, “Impact of oral vitamin D supplementation on serum 25-hydroxyvitamin D levels in oncology,” Nutrition Journal, vol. 9, article 60, 2010.
[172]
L. J. Peppone, A. J. Huston, M. E. Reid et al., “The effect of various vitamin D supplementation regimens in breast cancer patients,” Breast Cancer Research and Treatment, vol. 127, no. 1, pp. 171–177, 2011.
[173]
P. J. Goodwin, M. Ennis, K. I. Pritchard, J. Koo, and N. Hood, “Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer,” Journal of Clinical Oncology, vol. 27, no. 23, pp. 3757–3763, 2009.
[174]
E. Piura, J. W. Chapman, and A. Lipton, “Serum vitamin D and prognosis of postmenopausal breast cancer patients: NCIC-CTG MA14 trial,” in Proceedings of the ASCO Annual Meeting, American Society of Clinical Oncology, 2009.
[175]
E. T. Jacobs, C. A. Thomson, S. W. Flatt et al., “Vitamin D and breast cancer recurrence in the Women's Healthy Eating and Living (WHEL) Study,” American Journal of Clinical Nutrition, vol. 93, no. 1, pp. 108–117, 2011.
[176]
R. S. Heist, W. Zhou, Z. Wang et al., “Circulating 25-hydroxyvitamin D, VDR polymorphisms, and survival in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 34, pp. 5596–5602, 2008.
[177]
K. Ng, J. A. Meyerhardt, K. Wu et al., “Circulating 25-hydroxyvitamin D levels and survival in patients with colorectal cancer,” Journal of Clinical Oncology, vol. 26, no. 18, pp. 2984–2991, 2008.
[178]
K. M. Wesa, A. Cronin, and N. H. Segal, Serum 25-Hydroxyvitamin D and Survival in Colorectacl Cancer: A Retrospective Analysis, American Society of Clinical Oncology, Chicago, Ill, USA, 2010.
[179]
S. Tretli, E. Hernes, J. P. Berg, U. E. Hestvik, and T. E. Robsahm, “Association between serum 25(OH)D and death from prostate cancer,” British Journal of Cancer, vol. 100, no. 3, pp. 450–454, 2009.
[180]
J. A. Newton-Bishop, S. Beswick, J. Randerson-Moor et al., “Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5439–5444, 2009.
[181]
C. Buttigliero, C. Monagheddu, P. Petroni et al., “Prognostic role of vitamin d status and efficacy of vitamin D supplementation in cancer patients: a systematic review,” Oncologist, vol. 16, pp. 1215–1227, 2011.
[182]
W. B. Grant and A. N. Peiris, “Possible role of serum 25-hydroxyvitamin D in black-white health disparities in the United States,” Journal of the American Medical Directors Association, vol. 11, no. 9, pp. 617–628, 2010.
[183]
S. R. T. Evans, J. Nolla, J. Hanfelt, M. Shabahang, R. J. Nauta, and I. B. Shchepotin, “Vitamin D receptor expression as a predictive marker of biological behavior in human colorectal cancer,” Clinical Cancer Research, vol. 4, no. 7, pp. 1591–1595, 1998.
[184]
W. Seubwai, C. Wongkham, A. Puapairoj, N. Khuntikeo, and S. Wongkham, “Overexpression of vitamin D receptor indicates a good prognosis for cholangiocarcinoma: implications for therapeutics,” Cancer, vol. 109, no. 12, pp. 2497–2505, 2007.
[185]
W. Obara, R. Konda, S. Akasaka, S. Nakamura, A. Sugawara, and T. Fujioka, “Prognostic significance of vitamin D receptor and retinoid X receptor expression in renal cell carcinoma,” Journal of Urology, vol. 178, no. 4, pp. 1497–1503, 2007.
[186]
J. A. Halsall, J. E. Osborne, L. Potter, J. H. Pringle, and P. E. Hutchinson, “A novel polymorphism in the IA promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma,” British Journal of Cancer, vol. 91, no. 4, pp. 765–770, 2004.
[187]
W. Obara, Y. Suzuki, K. Kato, S. Tanji, R. Konda, and T. Fujioka, “Vitamin D receptor gene polymorphisms are associated with increased risk and progression of renal cell carcinoma in a Japanese population,” International Journal of Urology, vol. 14, no. 6, pp. 483–487, 2007.
[188]
S. Tamez, C. Norizoe, K. Ochiai et al., “Vitamin D receptor polymorphisms and prognosis of patients with epithelial ovarian cancer,” British Journal of Cancer, vol. 101, no. 12, pp. 1957–1960, 2009.
[189]
Y. Xu, A. Shibata, J. E. McNeal, T. A. Stamey, D. Feldman, and D. M. Peehl, “Vitamin D receptor start codon polymorphism (FokI) and prostate cancer progression,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 1, pp. 23–27, 2003.
[190]
H. Williams, I. J. Powell, S. J. Land et al., “Vitamin D receptor gene polymorphisms and disease free survival after radical prostatectomy,” Prostate, vol. 61, no. 3, pp. 267–275, 2004.
[191]
M. C. Yagmurdur, F. B. Atac, N. Uslu et al., “Clinical importance of vitamin D receptor gene polymorphism in invasive ductal carcinoma,” International Surgery, vol. 94, no. 4, pp. 304–309, 2009.
[192]
W. Zhou, R. S. Heist, G. Liu et al., “Polymorphisms of vitamin D receptor and survival in early-stage non-small cell lung cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2239–2245, 2006.
[193]
T. E. McAlindon, D. T. Felson, Y. Zhang et al., “Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study,” Annals of Internal Medicine, vol. 125, no. 5, pp. 353–359, 1996.
[194]
R. T. Chlebowski, K. C. Johnson, D. Lane et al., “25-Hydroxyvitamin D concentration, vitamin D intake and joint symptoms in postmenopausal women,” Maturitas, vol. 68, no. 1, pp. 73–78, 2011.
[195]
K. D. Crew, H. Greenlee, J. Capodice et al., “Prevalence of joint symptoms in postmenopausal women taking aromatase inhibitors for early-stage breast cancer,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3877–3883, 2007.
[196]
R. T. Chlebowski, “Aromatase inhibitor-associated arthralgias,” Journal of Clinical Oncology, vol. 27, no. 30, pp. 4932–4934, 2009.
[197]
N. L. Waltman, C. D. Ott, J. J. Twiss, G. J. Gross, and A. M. Lindsey, “Vitamin D insufficiency and musculoskeletal symptoms in breast cancer survivors on aromatase inhibitor therapy,” Cancer Nursing, vol. 32, no. 2, pp. 143–150, 2009.
[198]
D. Prieto-Alhambra, M. K. Javaid, S. Servitja et al., “Vitamin D threshold to prevent aromatase inhibitor-induced arthralgia: A Prospective Cohort Study,” Breast Cancer Research and Treatment, vol. 125, no. 3, pp. 869–878, 2011.
[199]
Q. J. Khan, P. S. Reddy, B. F. Kimler et al., “Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer,” Breast Cancer Research and Treatment, vol. 119, no. 1, pp. 111–118, 2010.
[200]
D. W. Cescon, P. A. Ganz, S. Hallak, M. Ennis, B. K. Mills, and P. J. Goodwin, “Feasibility of a randomized controlled trial of vitamin D vs. placebo in recently diagnosed breast cancer patients,” Breast Cancer Research and Treatment, vol. 134, no. 2, pp. 759–767, 2012.
[201]
M. F. Holick and T. C. Chen, “Vitamin D deficiency: a worldwide problem with health consequences,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 1080S–1086S, 2008.
[202]
M. F. Holick, “Medical progress: vitamin D deficiency,” The New England Journal of Medicine, vol. 357, no. 3, pp. 266–281, 2007.
[203]
H. A. Bischoff-Ferrari, E. Giovannucci, W. C. Willett, T. Dietrich, and B. Dawson-Hughes, “Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 18–28, 2006.
[204]
P. Autier and S. Gandini, “Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials,” Archives of Internal Medicine, vol. 167, no. 16, pp. 1730–1737, 2007.
[205]
C. F. Garland, E. D. Gorham, S. B. Mohr et al., “Vitamin D and prevention of breast cancer: pooled analysis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 708–711, 2007.
[206]
R. P. Heaney, K. M. Davies, T. C. Chen, M. F. Holick, and M. Janet Barger-Lux, “Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol,” American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 204–210, 2003.
[207]
S. Ish-Shalom, E. Segal, T. Salganik, B. Raz, I. L. Bromberg, and R. Vieth, “Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3430–3435, 2008.
[208]
R. Vieth, P. C. R. Chan, and G. D. MacFarlane, “Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 288–294, 2001.
[209]
J. N. Hathcock, A. Shao, R. Vieth, and R. Heaney, “Risk assessment for vitamin D,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 6–18, 2007.
[210]
R. Z. Stolzenberg-Solomon, R. Vieth, A. Azad et al., “A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers,” Cancer Research, vol. 66, no. 20, pp. 10213–10219, 2006.
[211]
P. Tuohimaa, L. Tenkanen, M. Ahonen et al., “Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries,” International Journal of Cancer, vol. 108, no. 1, pp. 104–108, 2004.
[212]
C. C. Abnet, W. Chen, S. M. Dawsey et al., “Serum 25(OH)-vitamin D concentration and risk of esophageal squamous dysplasia,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 9, pp. 1889–1893, 2007.
[213]
M. L. Melamed, E. D. Michos, W. Post, and B. Astor, “25-hydroxyvitamin D levels and the risk of mortality in the general population,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1629–1637, 2008.
[214]
C. F. Garland, F. C. Garland, E. K. Shaw, G. W. Comstock, K. J. Helsing, and E. D. Gorham, “Serum 25-hydroxyvitamin D and colon cancer: eight-year Prospective Study,” Lancet, vol. 2, no. 8673, pp. 1176–1178, 1989.
[215]
T. J. Wang, M. J. Pencina, S. L. Booth et al., “Vitamin D deficiency and risk of cardiovascular disease,” Circulation, vol. 117, no. 4, pp. 503–511, 2008.
[216]
R. Vieth, “Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety,” American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 842–856, 1999.
[217]
R. D. Jackson, A. Z. LaCroix, M. Gass et al., “Calcium plus vitamin D supplementation and the risk of fractures,” The New England Journal of Medicine, vol. 354, no. 7, pp. 669–683, 2006.
[218]
M. Chung, J. Lee, T. Terasawa, J. Lau, and T. A. Trikalinos, “Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force,” Annals of Internal Medicine, vol. 155, pp. 827–838, 2011.
[219]
J. Wactawski-Wende, J. Morley Kotchen, G. L. Anderson et al., “Calcium plus vitamin D supplementation and the risk of colorectal cancer,” The New England Journal of Medicine, vol. 354, no. 7, pp. 684–696, 2006.
[220]
E. L. Ding, S. Mehta, W. W. Fawzi, and E. L. Giovannucci, “Interaction of estrogen therapy with calcium and vitamin D supplementation on colorectal cancer risk: reanalysis of women's health initiative randomized trial,” International Journal of Cancer, vol. 122, no. 8, pp. 1690–1694, 2008.
[221]
E. A. Jacobson, K. A. James, H. L. Newmark, and K. K. Carroll, “Effects of dietary fat, calcium, and vitamin D on growth and mammary tumorigenesis induced by 7,12-dimethylbenz(a)anthracene in female Sprague-Dawley rats,” Cancer Research, vol. 49, no. 22, pp. 6300–6303, 1989.
[222]
A. Avenell, W. J. Gillespie, L. D. Gillespie, and D. O'Connell, “Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD000227, 2009.
[223]
C. E. Simmons, E. Amir, G. Dranitsaris et al., “Altered calcium metabolism in patients on long-term bisphosphonate therapy for metastatic breast cancer,” Anticancer Research, vol. 29, no. 7, pp. 2707–2711, 2009.
[224]
E. Amir, C. E. Simmons, O. C. Freedman et al., “A phase 2 trial exploring the effects of high-dose (10,000 IU/day) vitamin D3 in breast cancer patients with bone metastases,” Cancer, vol. 116, no. 2, pp. 284–291, 2010.
[225]
T. M. Beer, D. Lemmon, B. A. Lowe, and W. D. Henner, “High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma,” Cancer, vol. 97, no. 5, pp. 1217–1224, 2003.
[226]
C. Gross, T. Stamey, S. Hancock, and D. Feldman, “Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol),” Journal of Urology, vol. 159, no. 6, pp. 2035–2040, 1998.
[227]
T. M. Beer and A. Myrthue, “Calcitriol in cancer treatment: from the lab to the clinic,” Molecular Cancer Therapeutics, vol. 3, no. 3, pp. 373–381, 2004.
[228]
D. L. Trump, D. M. Potter, J. Muindi, A. Brufsky, and C. S. Johnson, “Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer,” Cancer, vol. 106, no. 10, pp. 2136–2142, 2006.
[229]
T. Gulliford, J. English, K. W. Colston, P. Menday, S. Moller, and R. C. Coombes, “A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer,” British Journal of Cancer, vol. 78, no. 1, pp. 6–13, 1998.
[230]
C. M?rk Hansen, K. J. Hamberg, E. Binderup, and L. Binderup, “Seocalcitol (EB 1089): a vitamin D analogue of anti-cancer potential. Background, design, synthesis, pre-clinical and clinical evaluation,” Current Pharmaceutical Design, vol. 6, no. 7, pp. 803–828, 2000.
[231]
T. W. Flaig, A. Barqawi, G. Miller et al., “A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer,” Cancer, vol. 107, no. 2, pp. 266–274, 2006.
[232]
T. M. Beer, C. W. Ryan, P. M. Venner, et al., “Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators,” Journal of Clinical Oncology, vol. 25, pp. 669–674, 2007.
[233]
H. I. Scher, X. Jia, K. Chi et al., “Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 16, pp. 2191–2198, 2011.
[234]
J. S. Chan, T. M. Beer, D. I. Quinn et al., “A phase II study of high-dose calcitriol combined with mitoxantrone and prednisone for androgen-independent prostate cancer,” BJU International, vol. 102, no. 11, pp. 1601–1606, 2008.
[235]
S. Attia, J. Eickhoff, G. Wilding et al., “Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-independent prostate cancer,” Clinical Cancer Research, vol. 14, no. 8, pp. 2437–2443, 2008.
[236]
R. Petrioli, A. Pascucci, E. Francini et al., “Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel,” BJU International, vol. 100, no. 4, pp. 775–779, 2007.
[237]
A. V. Krishnan, D. L. Trump, C. S. Johnson, and D. Feldman, “The role of vitamin D in cancer prevention and treatment,” Endocrinology and Metabolism Clinics of North America, vol. 39, no. 2, pp. 401–418, 2010.
[238]
K. Kupferschmidt, “Uncertain verdict as vitamin D goes on trial,” Science, vol. 337, pp. 1476–1478, 2012.
[239]
C. J. Fabian, B. F. Kimler, T. Phillips, and C. M. Zalles, “Levels of 25-hydroxy-vitamin D in pre-menopausal women at high risk for development of breast cancer,” Cancer Research, vol. 69, no. 2, supplement 1, 2009.