Breast cancers today are of predominantly T1 ( ?cm) or T2 ( ?cm) categories due to early diagnosis. Molecular profiling using microarrays has led to the notion of breast cancer as a heterogeneous disease both clinically and molecularly. Given the prognostic power and clinical use of tumor size, the purpose of this study was to search for molecular signatures characterizing clinical T1 and T2. In total 46 samples were included in the discovery dataset. After adjusting for hormone receptor status, lymph node status, grade, and tumor subclass 441 genes were differently expressed between T1 and T2 tumors. Focal adhesion and extracellular matrix receptor interaction were upregulated in the smaller tumors while p38MAPK signaling and immune-related pathways were more dominant in the larger tumors. The T-size signature was then tested on a validation set of 947 breast tumor samples. Using the T-size expression signatures instead of tumor size leads to a significant difference in risk for distant metastases ( ). If further confirmed, this molecular signature can be used to select patients with tumor category T1 who may need more aggressive treatment and patients with tumor category T2 who may have less benefit from it. 1. Introduction Breast cancer is by far the most frequent cancer among women, and ranks second overall [1]. Guidelines for breast cancer treatment are based upon classical clinicopathological parameters: age, tumor size, grade, lymph node status, and histological type; in addition to hormone receptor status [2]. Lymph node (N) status is the most powerful single indicator of breast cancer prognosis [3], while tumor size, categorized into four groups (T1–4) is the second strongest indicator and is independent of lymph node status [3]. Here we attempted to identify the molecular background behind this prognostic effect of tumor size. Mammographic screening has led to breast cancer diagnosis at preclinical stage and, as a consequence, most diagnosed cases present as T1 or T2, with significantly better survival in T1 tumors [4]. Nevertheless, T1 tumors may also give recurrence or metastases. Chemotherapy and hormonal treatment reduce the risk of recurrence or distant metastases by approximately 30% and according to the current guidelines whether a tumor is T1 or T2 is a critical factor in treatment decision. However, 70–80% of patients would have survived without adjuvant treatment [5]. How to distinguish the patients that would benefit from adjuvant treatment would therefore be of great value to the patient preventing possible severe side effects, and
References
[1]
J. Ferlay, H. Shin, F. Bray, et al., “GLOBOCAN 2008 v1.2, cancer incidence and mortality worldwide,” in IARC CancerBase, 2012, http://globocan.iarc.fr.
[2]
A. Goldhirsch, J. H. Glick, R. D. Gelber et al., “Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005,” Annals of Oncology, vol. 16, no. 10, pp. 1569–1583, 2005.
[3]
S. Ciatto, S. Cecchini, A. Iossa, and G. Grazzini, “‘T’ category and operable breast cancer prognosis,” Tumori, vol. 75, no. 1, pp. 18–22, 1989.
[4]
A. H. Olsen, S. H. Njor, and E. Lynge, “Estimating the benefits of mammography screening: the impact of study design,” Epidemiology, vol. 18, no. 4, pp. 487–492, 2007.
[5]
Early Breast Cancer Trialists' Collaborative Group (EBCTCG), “Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials,” The Lancet, vol. 365, no. 9472, pp. 1687–1717, 2005.
[6]
D. B. Allison, X. Cui, G. P. Page, and M. Sabripour, “Microarray data analysis: from disarray to consolidation and consensus,” Nature Reviews Genetics, vol. 7, no. 1, pp. 55–65, 2006.
[7]
L. D. Miller and E. T. Liu, “Expression genomics in breast cancer research: microarrays at the crossroads of biology and medicine,” Breast Cancer Research, vol. 9, no. 2, article 206, 2007.
[8]
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998.
[9]
C. M. Perou, T. S?rlie, M. B. Eisen, et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000.
[10]
L. J. Van't Veer, H. Dai, M. J. van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002.
[11]
R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of multiple cancer types by shrunken centroids of gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6567–6572, 2002.
[12]
T. S?rlie, “Molecular portraits of breast cancer: tumour subtypes as distinct disease entities,” European Journal of Cancer, vol. 40, no. 18, pp. 2667–2675, 2004.
[13]
M. J. van de Vijver, Y. D. He, L. J. van't Veer et al., “A gene-expression signature as a predictor of survival in breast cancer,” The New England Journal of Medicine, vol. 347, no. 25, pp. 1999–2009, 2002.
[14]
B. Dysvik and I. Jonassen, “J-Express: exploring gene expression data using Java,” Bioinformatics, vol. 17, no. 4, pp. 369–370, 2001.
[15]
V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microarrays applied to the ionizing radiation response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5116–5121, 2001.
[16]
B. H. Mevik and R. Wehrens, “The pls package: principal component and partial least squares regression in R,” Journal of Statistical Software, vol. 18, no. 2, pp. 1–23, 2007.
[17]
R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010.
[18]
D. W. Huang, B. T. Sherman, Q. Tan et al., “The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists,” Genome Biology, vol. 8, no. 9, article R183, 2007.
[19]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.
[20]
X. Zhao, E. A. R?deland, T. S?rlie, and H. G. Russnes, “Systematic assessment of prognostic gene signatures for breast cancer shows distinct influence of time and ER status,” under review.
[21]
S. Loi, B. Haibe-Kains, C. Desmedt et al., “Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade,” Journal of Clinical Oncology, vol. 25, no. 10, pp. 1239–1246, 2007.
[22]
L. D. Miller, J. Smeds, J. George et al., “An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13550–13555, 2005.
[23]
Y. Pawitan, J. Bjohle, L. Amler, et al., “Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts,” Breast Cancer Research, vol. 7, no. 6, pp. R953–R964, 2005.
[24]
C. Desmedt, F. Piette, S. Loi et al., “Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series,” Clinical Cancer Research, vol. 13, no. 11, pp. 3207–3214, 2007.
[25]
A. J. Minn, G. P. Gupta, P. M. Siegel et al., “Genes that mediate breast cancer metastasis to lung,” Nature, vol. 436, no. 7050, pp. 518–524, 2005.
[26]
K. Chin, S. DeVries, J. Fridlyand et al., “Genomic and transcriptional aberrations linked to breast cancer pathophysiologies,” Cancer Cell, vol. 10, no. 6, pp. 529–541, 2006.
[27]
R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed, “Summaries of Affymetrix GeneChip probe level data,” Nucleic Acids Research, vol. 31, no. 4, article e15, 2003.
[28]
A. H. Sims, G. J. Smethurst, Y. Hey, et al., “The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets—improving meta-analysis and prediction of prognosis,” BMC Medical Genomics, vol. 1, no. 1, article 42, 2008.
[29]
C. M. Perou, S. S. Jeffrey, M. van de Rijn et al., “Distinctive gene expression patterns in human mammary epithelial cells and breast cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9212–9217, 1999.
[30]
T. S?rlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001.
[31]
P. S. Bernard, J. S. Parker, M. Mullins et al., “Supervised risk predictor of breast cancer based on intrinsic subtypes,” Journal of Clinical Oncology, vol. 27, no. 8, pp. 1160–1167, 2009.
[32]
M. Buyse, S. Loi, L. van't Veer et al., “Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer,” Journal of the National Cancer Institute, vol. 98, no. 17, pp. 1183–1192, 2006.
[33]
Y. Wang, J. G. M. Klijn, Y. Zhang et al., “Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer,” The Lancet, vol. 365, no. 9460, pp. 671–679, 2005.
[34]
C. Sotiriou, P. Wirapati, S. Loi et al., “Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis,” Journal of the National Cancer Institute, vol. 98, no. 4, pp. 262–272, 2006.
[35]
S. Paik, S. Shak, G. Tang et al., “A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer,” The New England Journal of Medicine, vol. 351, no. 27, pp. 2817–2826, 2004.
[36]
H. Y. Chang, D. S. A. Nuyten, J. B. Sneddon et al., “Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 10, pp. 3738–3743, 2005.
[37]
H. Y. Chang, J. B. Sneddon, A. A. Alizadeh et al., “Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds,” PLoS Biology, vol. 2, no. 2, article E7, 2004.
[38]
J. T. Chi, Z. Wang, D. S. A. Nuyten, et al., “Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers,” PLoS Medicine, vol. 3, no. 3, article e47, 2006.
[39]
D. S. A. Nuyten, T. Hastie, J. T. A. Chi, H. Y. Chang, and M. J. van de Vijver, “Combining biological gene expression signatures in predicting outcome in breast cancer: an alternative to supervised classification,” European Journal of Cancer, vol. 44, no. 15, pp. 2319–2329, 2008.
[40]
M. Schemper, “The relative importance of prognostic factors in studies of survival,” Statistics in Medicine, vol. 12, no. 24, pp. 2377–2382, 1993.
[41]
F. Harrell, K. Lee, and D. Mark, “Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors,” Statistics in Medicine, vol. 15, pp. 361–387, 1996.
[42]
H. Brenner, “Long-term survival rates of cancer patients achieved by the end of the 20th century: a period analysis,” The Lancet, vol. 360, no. 9340, pp. 1131–1135, 2002.
[43]
X. Zhao, T. S?rlie, B. Naume et al., “Combining gene signatures improves prediction of breast cancer survival,” PLoS ONE, vol. 6, no. 3, Article ID e17845, 2011.
[44]
C. Fan, D. S. Oh, L. Wessels et al., “Concordance among gene-expression-based predictors for breast cancer,” The New England Journal of Medicine, vol. 355, no. 6, pp. 560–569, 2006.
[45]
P. Wirapati, C. Sotiriou, S. Kunkel et al., “Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures,” Breast Cancer Research, vol. 10, no. 4, article R65, 2008.
[46]
M. Stendahl, S. Nilsson, C. Wigerup et al., “P27Kip1 is a predictive factor for tamoxifen treatment response but not a prognostic marker in premenopausal breast cancer patients,” International Journal of Cancer, vol. 127, no. 12, pp. 2851–2858, 2010.
[47]
I. M. Chu, L. Hengst, and J. M. Slingerland, “The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy,” Nature Reviews Cancer, vol. 8, no. 4, pp. 253–267, 2008.
[48]
P. L. Porter, W. E. Barlow, I. T. Yeh et al., “p27Kip1 and cyclin E expression and breast cancer survival after treatment with adjuvant chemotherapy,” Journal of the National Cancer Institute, vol. 98, no. 23, pp. 1723–1731, 2006.
[49]
L. Newman, W. Xia, H. Y. Yang et al., “Correlation of p27 protein expression with HER-2/neu expression in breast cancer,” Molecular Carcinogenesis, vol. 30, no. 3, pp. 169–175, 2001.
[50]
A. Giubellino, T. R. Burke, and D. P. Bottaro, “Grb2 signaling in cell motility and cancer,” Expert Opinion on Therapeutic Targets, vol. 12, no. 8, pp. 1021–1033, 2008.
[51]
E. Wertheimer, A. Gutierrez-Uzquiza, C. Rosemblit, C. Lopez-Haber, M. S. Sosa, and M. G. Kazanietz, “Rac signaling in breast cancer: a tale of GEFs and GAPs,” Cellular Signalling, vol. 24, no. 2, pp. 353–362, 2012.