全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

Does Time between Imaging Diagnosis and Initiation of Radiotherapy Impact Survival after Whole-Brain Radiotherapy for Brain Metastases?

DOI: 10.1155/2013/214304

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aims. To evaluate whether reduced waiting time influences survival of patients treated with whole-brain radiotherapy (WBRT) for brain metastases. Materials and Methods. Retrospective intention-to-treat study including 110 patients treated with primary WBRT (typically 10 fractions of 3?Gy; no other treatment between diagnosis and WBRT). Uni- and multivariate tests were performed. Results. Median delay between imaging diagnosis and WBRT was 12 days (range 0–66 days). WBRT started within 1 week in 36%, during the second week in 28%, and during the third week in 18% of patients. No significant correlation between waiting time and survival was evident, except for one subgroup of patients. Those without extracranial metastases (potentially more threatened by worse intracranial disease control) survived for a median of 2.5 months from WBRT if waiting time was 2 weeks or longer as compared to 5.6 months if waiting time was shorter than 2 weeks ( ). The same correlation was seen if survival was computed from imaging diagnosis. Conclusion. If departmental resources are not sufficient to provide immediate WBRT within 2 weeks to all patients, those without extracranial metastases should be prioritised. This study did not address the impact of waiting time on quality of life or symptom palliation. 1. Introduction On an international scale, access to palliative radiotherapy varies with geographic region, health care system, and sociodemographic factors [1, 2]. The presence of waiting lists might cause distress, unnecessary symptom burden, and under certain circumstances compromised outcomes, at least if long waiting time is unavoidable. Regarding treatment of brain metastases, a considerable number of patients continue to receive palliative whole-brain radiotherapy (WBRT) [3, 4]. Administration of 10 fractions of 3?Gy over 2 weeks or 5 fractions of 4?Gy over one week is commonly used fractionation regimens in many countries [5]. Given that median survival of patients managed with best supportive care is limited (in the order of 4–6 weeks [6, 7]), one might assume that delays in starting WBRT should be minimised, if such treatment is indicated and the preferred therapeutic option. Clinical data on the impact of variable waiting times between imaging diagnosis of brain metastases and initiation of WBRT on survival after radiotherapy are scarce [8]. Therefore, we evaluated survival of a contemporary cohort of patients treated with WBRT. 2. Patients and Methods We analysed patients from a previously described multi-institutional brain metastases database, which is

References

[1]  E. Rosenblatt, J. Izewska, Y. Anacak, et al., “Radiotherapy capacity in European countries: an analysis of the Directory of Radiotherapy Centres (DIRAC) database,” The Lancet Oncology, vol. 14, no. 2, pp. e79–e86, 2013.
[2]  M. R. Lavergne, G. M. Johnston, J. Gao, T. J. B. Dummer, and D. E. Rheaume, “Variation in the use of palliative radiotherapy at end of life: examining demographic, clinical, health service, and geographic factors in a population-based study,” Palliative Medicine, vol. 25, no. 2, pp. 101–110, 2011.
[3]  W. Kong, C. R. Jarvis, D. S. Sutton, K. Ding, and W. J. Mackillop, “The use of palliative whole brain radiotherapy in the management of brain metastases,” Clinical Oncology, vol. 24, no. 10, pp. e149–e158, 2012.
[4]  M. N. Tsao, D. Rades, A. Wirth, et al., “International practice survey on the management of brain metastases: third international consensus workshop on palliative radiotherapy and symptom control,” Clinical Oncology, vol. 24, no. 6, pp. e81–e92, 2012.
[5]  D. Rades, S. Kieckebusch, R. Lohynska et al., “Reduction of overall treatment time in patients irradiated for more than three brain metastases,” International Journal of Radiation Oncology, Biology, Physics, vol. 69, no. 5, pp. 1509–1513, 2007.
[6]  R. E. Langley, R. J. Stephens, M. Nankivell, et al., “Interim data from the Medical Research Council QUARTZ trial: does whole brain radiotherapy affect the survival and quality of life of patients with brain metastases from non-small cell lung cancer?” Clinical Oncology, vol. 25, pp. e23–e30, 2013.
[7]  C. Nieder, J. Norum, A. Dalhaug, G. Aandahl, and A. Pawinski, “Radiotherapy versus best supportive care in patients with brain metastases and adverse prognostic factors,” Clinical & Experimental Metastasis, 2013.
[8]  J. Lutterbach, S. Bartelt, F. Momm, G. Becker, H. Frommhold, and C. Ostertag, “Is older age associated with a worse prognosis due to different patterns of care? A long-term study of 1346 patients with glioblastomas or brain metastases,” Cancer, vol. 103, no. 6, pp. 1234–1244, 2005.
[9]  C. Nieder, A. Pawinski, and M. Molls, “Prediction of short survival in patients with brain metastases based on three different scores: a role for ‘triple-negative’ status?” Clinical Oncology, vol. 22, no. 1, pp. 65–69, 2010.
[10]  L. Gaspar, C. Scott, M. Rotman et al., “Recursive Partitioning Analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials,” International Journal of Radiation Oncology, Biology, Physics, vol. 37, no. 4, pp. 745–751, 1997.
[11]  P. W. Sperduto, N. Kased, D. Roberge, et al., “Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases,” Journal of Clinical Oncology, vol. 30, no. 4, pp. 419–425, 2012.
[12]  M. Jackson, S. Bydder, E. Maujean, M. Taylor, and A. Nowak, “Radiotherapy in the management of high-grade gliomas diagnosed in Western Australia: a patterns of care study,” Journal of Medical Imaging and Radiation Oncology, vol. 56, no. 1, pp. 109–115, 2012.
[13]  Y. R. Lawrence, D. T. Blumenthal, D. Matceyevsky, A. A. Kanner, F. Bokstein, and B. W. Corn, “Delayed initiation of radiotherapy for glioblastoma: how important is it to push to the front (or the back) of the line?” Journal of Neuro-Oncology, vol. 105, no. 1, pp. 1–7, 2011.
[14]  M. P. Mehta, W. R. Shapiro, S. C. Phan et al., “Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial,” International Journal of Radiation Oncology, Biology, Physics, vol. 73, no. 4, pp. 1069–1076, 2009.
[15]  C. Danjoux, E. Chow, A. Drossos et al., “An innovative rapid response radiotherapy program to reduce waiting time for palliative radiotherapy,” Supportive Care in Cancer, vol. 14, no. 1, pp. 38–43, 2006.
[16]  T. Murai, Y. Shibamoto, F. Baba, et al., “Progression of non-small cell lung cancer during the interval before stereotactic body radiotherapy,” International Journal of Radiation Oncology, Biology, Physics, vol. 82, no. 1, pp. 463–467, 2012.
[17]  A. R. Jensen, H. M. Nellemann, and J. Overgaard, “Tumor progression in waiting time for radiotherapy in head and neck cancer,” Radiotherapy and Oncology, vol. 84, no. 1, pp. 5–10, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133