Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma. 1. Introduction Gliomas are the most common histological type of malignant brain tumor and share the feature of having some degree of glial differentiation. Over 80% of gliomas are astrocytic tumors, including glioblastoma (GBM), the most malignant glioma [1]. Gliomas are characterized by their infiltrating nature, and extensive invasion into the surrounding normal brain tissue is often observed. Despite advances in treatment strategies, the prognosis for GBM patients remains very poor, and the resistance of GBM against treatment causes a high rate of tumor recurrence. The cancer stem cell (CSC) hypothesis provides an explanation for the therapeutic resistance and ability to regenerate tumors from a small population of cells. According to this hypothesis, only CSCs exhibiting stem-like characteristics can propagate and reinitiate the tumor. Recent studies support the existence of CSCs in GBM [2, 3], and a small number of glioma stem cells (GSCs) with resistances against conventional chemotherapy and radiotherapy are sufficient to give rise to recurrent tumors [4]. In addition, because of their ability for multipotent differentiation and tumor initiation, GSCs can generate heterogeneous tumor masses as GBM. Since the discovery of GSCs, research for the treatment of GBM has focused on the identification of intrinsic molecular pathways involved in regulation of their stemness and tumorigenicity. However, it has become clear that GSCs are tightly regulated by specialized microenvironments (niches) within tumors, namely, vascular and hypoxic niches [5]. Furthermore, GSCs do not simply receive signals from the surrounding niche but
References
[1]
P. Kleihues, D. N. Louis, B. W. Scheithauer, et al., “The WHO classification of tumors of the nervous system,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 3, pp. 215–229, 2002.
[2]
D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997.
[3]
S. K. Singh, I. D. Clarke, M. Terasaki et al., “Identification of a cancer stem cell in human brain tumors,” Cancer Research, vol. 63, no. 18, pp. 5821–5828, 2003.
[4]
J. Lee, S. Kotliarova, Y. Kotliarov et al., “Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines,” Cancer Cell, vol. 9, no. 5, pp. 391–403, 2006.
[5]
J. Chen, R. M. McKay, and L. F. Parada, “Malignant glioma: lessons from genomics, mouse models, and stem cells,” Cell, vol. 149, no. 1, pp. 36–47, 2012.
[6]
A. Filatova, T. Acker, and B. K. Garvalov, “The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment,” Biochimica et Biophysica Acta, vol. 1830, no. 2, pp. 2496–2508, 2013.
[7]
A. B. Heimberger, L. E. Crotty, G. E. Archer et al., “Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors,” Clinical Cancer Research, vol. 9, no. 11, pp. 4247–4254, 2003.
[8]
J. H. Sampson, A. B. Heimberger, G. E. Archer et al., “Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4722–4729, 2010.
[9]
N. Yajima, R. Yamanaka, T. Mine et al., “Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma,” Clinical Cancer Research, vol. 11, no. 16, pp. 5900–5911, 2005.
[10]
M. Terasaki, S. Shibui, Y. Narita et al., “Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen-A24 with recurrent or progressive glioblastoma multiforme,” Journal of Clinical Oncology, vol. 29, no. 3, pp. 337–344, 2011.
[11]
S. Izumoto, A. Tsuboi, Y. Oka et al., “Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme,” Journal of Neurosurgery, vol. 108, no. 5, pp. 963–971, 2008.
[12]
K. Iwami, S. Shimato, M. Ohno, et al., “Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele,” Cytotherapy, vol. 14, no. 6, pp. 733–742, 2012.
[13]
S. Pellegatta, P. L. Poliani, D. Corno et al., “Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas,” Cancer Research, vol. 66, no. 21, pp. 10247–10252, 2006.
[14]
Q. Xu, G. Liu, X. Yuan et al., “Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens,” Stem Cells, vol. 27, no. 8, pp. 1734–1740, 2009.
[15]
M. Schmitz, A. Temme, V. Senner et al., “Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy,” The British Journal of Cancer, vol. 96, no. 8, pp. 1293–1301, 2007.
[16]
R. Ueda, K. Ohkusu-Tsukada, N. Fusaki et al., “Identification of HLA-A2- And A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy,” International Journal of Cancer, vol. 126, no. 4, pp. 919–929, 2010.
[17]
D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007.
[18]
D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008.
[19]
R. McLendon, A. Friedman, D. Bigner et al., “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008.
[20]
P. Kleihues and H. Ohgaki, “Primary and secondary glioblastomas: from concept to clinical diagnosis,” Neuro-Oncology, vol. 1, no. 1, pp. 44–51, 1999.
[21]
H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblastoma,” The American Journal of Pathology, vol. 170, no. 5, pp. 1445–1453, 2007.
[22]
E. A. Maher, C. Brennan, P. Y. Wen et al., “Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities,” Cancer Research, vol. 66, no. 23, pp. 11502–11513, 2006.
[23]
C. L. Tso, W. A. Freije, A. Day et al., “Distinct transcription profiles of primary and secondary glioblastoma subgroups,” Cancer Research, vol. 66, no. 1, pp. 159–167, 2006.
[24]
H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, vol. 360, no. 8, pp. 765–773, 2009.
[25]
H. Noushmehr, D. J. Weisenberger, K. Diefes et al., “Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma,” Cancer Cell, vol. 17, no. 5, pp. 510–522, 2010.
[26]
S. L. Gerson, “Clinical relevance of MGMT in the treatment of cancer,” Journal of Clinical Oncology, vol. 20, no. 9, pp. 2388–2399, 2002.
[27]
M. E. Hegi, A. C. Diserens, T. Gorlia et al., “MGMT gene silencing and benefit from temozolomide in glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 997–1003, 2005.
[28]
S. Rafii, D. Lyden, R. Benezra, K. Hattori, and B. Heissig, “Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?” Nature Reviews Cancer, vol. 2, no. 11, pp. 826–835, 2002.
[29]
G. L. Semenza, “Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics,” Oncogene, vol. 29, no. 5, pp. 625–634, 2010.
[30]
Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 6, pp. 529–539, 2006.
[31]
J. M. Heddleston, Z. Li, J. D. Lathia, S. Bao, A. B. Hjelmeland, and J. N. Rich, “Hypoxia inducible factors in cancer stem cells,” The British Journal of Cancer, vol. 102, no. 5, pp. 789–795, 2010.
[32]
M. Kowanetz and N. Ferrara, “Vascular endothelial growth factor signaling pathways: therapeutic perspective,” Clinical Cancer Research, vol. 12, no. 17, pp. 5018–5022, 2006.
[33]
L. A. Sullivan and R. A. Brekken, “The VEGF family in cancer and antibody-based strategies for their inhibition,” MAbs, vol. 2, no. 2, pp. 165–175, 2010.
[34]
P. Carmeliet, L. Moons, A. Luttun et al., “Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions,” Nature Medicine, vol. 7, no. 5, pp. 575–583, 2001.
[35]
D. J. Hicklin and L. M. Ellis, “Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 1011–1027, 2005.
[36]
S. J. Grau, F. Trillsch, J. Herms et al., “Expression of VEGFR3 in glioma endothelium correlates with tumor grade,” Journal of Neuro-Oncology, vol. 82, no. 2, pp. 141–150, 2007.
[37]
R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005.
[38]
P. Knizetova, J. Ehrmann, A. Hlobilkova et al., “Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay,” Cell Cycle, vol. 7, no. 16, pp. 2553–2561, 2008.
[39]
S. Dias, K. Hattori, Z. Zhu et al., “Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 511–521, 2000.
[40]
B. Jenny, J. A. Harrison, D. Baetens et al., “Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas,” Journal of Pathology, vol. 209, no. 1, pp. 34–43, 2006.
[41]
M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006.
[42]
A. L. Vescovi, R. Galli, and B. A. Reynolds, “Brain tumour stem cells,” Nature Reviews Cancer, vol. 6, no. 6, pp. 425–436, 2006.
[43]
S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004.
[44]
E. Pastrana, V. Silva-Vargas, and F. Doetsch, “Eyes wide open: a critical review of sphere-formation as an assay for stem cells,” Cell Stem Cell, vol. 8, no. 5, pp. 486–498, 2011.
[45]
D. Beier, P. Hau, M. Proescholdt et al., “CD133+ and CD133? glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles,” Cancer Research, vol. 67, no. 9, pp. 4010–4015, 2007.
[46]
K. M. Joo, S. Y. Kim, X. Jin et al., “Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas,” Laboratory Investigation, vol. 88, no. 8, pp. 808–815, 2008.
[47]
R. Chen, M. C. Nishimura, S. M. Bumbaca et al., “A Hierarchy of self-renewing tumor-initiating cell types in glioblastoma,” Cancer Cell, vol. 17, no. 4, pp. 362–375, 2010.
[48]
S. G. M. Piccirillo, R. Combi, L. Cajola et al., “Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution,” Oncogene, vol. 28, no. 15, pp. 1807–1811, 2009.
[49]
A. Roesch, M. Fukunaga-Kalabis, E. C. Schmidt et al., “A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth,” Cell, vol. 141, no. 4, pp. 583–594, 2010.
[50]
M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005.
[51]
A. Salmaggi, A. Boiardi, M. Gelati et al., “Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype,” Glia, vol. 54, no. 8, pp. 850–860, 2006.
[52]
M. K. Kang and S. K. Kang, “Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma,” Stem Cells and Development, vol. 16, no. 5, pp. 837–847, 2007.
[53]
L. Persano, E. Rampazzo, G. Basso, and G. Viola, “Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting,” Biochemical Pharmacology, vol. 85, no. 5, pp. 612–622, 2013.
[54]
S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006.
[55]
D. Beier, S. R?hrl, D. R. Pillai et al., “Temozolomide preferentially depletes cancer stem cells in glioblastoma,” Cancer Research, vol. 68, no. 14, pp. 5706–5715, 2008.
[56]
V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, and A. Ruiz i Altaba, “HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity,” Current Biology, vol. 17, no. 2, pp. 165–172, 2007.
[57]
K. A. Moore and I. R. Lemischka, “Stem cells and their niches,” Science, vol. 311, no. 5769, pp. 1880–1885, 2006.
[58]
Z. Huang, L. Cheng, O. A. Guryanova, Q. Wu, and S. Bao, “Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting,” Protein and Cell, vol. 1, no. 7, pp. 638–655, 2010.
[59]
M. C. Tate and M. K. Aghi, “Biology of angiogenesis and invasion in glioma,” Neurotherapeutics, vol. 6, no. 3, pp. 447–457, 2009.
[60]
K. E. Hovinga, L. J. A. Stalpers, C. van Bree et al., “Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance?” Journal of Neuro-Oncology, vol. 74, no. 2, pp. 99–103, 2005.
[61]
D. H. Gorski, M. A. Beckett, N. T. Jaskowiak et al., “Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation,” Cancer Research, vol. 59, no. 14, pp. 3374–3378, 1999.
[62]
T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” The Journal of Comparative Neurology, vol. 425, no. 4, pp. 479–494, 2000.
[63]
C. Calabrese, H. Poppleton, M. Kocak et al., “A perivascular niche for brain tumor stem cells,” Cancer Cell, vol. 11, no. 1, pp. 69–82, 2007.
[64]
Q. Shen, S. K. Goderie, L. Jin et al., “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science, vol. 304, no. 5675, pp. 1338–1340, 2004.
[65]
L. Ricci-Vitiani, R. Pallini, M. Biffoni et al., “Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells,” Nature, vol. 468, no. 7325, pp. 824–828, 2010.
[66]
R. Wang, K. Chadalavada, J. Wilshire et al., “Glioblastoma stem-like cells give rise to tumour endothelium,” Nature, vol. 468, no. 7325, pp. 829–833, 2010.
[67]
L. Clarke and D. Van Der Kooy, “Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways,” Stem Cells, vol. 27, no. 8, pp. 1879–1886, 2009.
[68]
Z. Li, S. Bao, Q. Wu et al., “Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells,” Cancer Cell, vol. 15, no. 6, pp. 501–513, 2009.
[69]
J. M. Heddleston, Z. Li, R. E. McLendon, A. B. Hjelmeland, and J. N. Rich, “The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype,” Cell Cycle, vol. 8, no. 20, pp. 3274–3284, 2009.
[70]
A. M. McCord, M. Jamal, U. T. Shankavarum, F. F. Lang, K. Camphausen, and P. J. Tofilon, “Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro,” Molecular Cancer Research, vol. 7, no. 4, pp. 489–497, 2009.
[71]
S. Bao, Q. Wu, S. Sathornsumetee et al., “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor,” Cancer Research, vol. 66, no. 16, pp. 7843–7848, 2006.
[72]
N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003.
[73]
W. F. Hickey, “Basic principles of immunological surveillance of the normal central nervous system,” Glia, vol. 36, no. 2, pp. 118–124, 2001.
[74]
B. Becher, A. Prat, and J. P. Antel, “Brain-immune connection: immuno-regulatory properties of CNS-resident cells,” Glia, vol. 29, no. 4, pp. 293–304, 2000.
[75]
S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells,” NeuroReport, vol. 10, no. 6, pp. 1347–1353, 1999.
[76]
H. Akiyama, T. Kondoh, T. Kokunai, T. Nagashima, N. Saito, and N. Tamaki, “Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain,” Brain Research, vol. 858, no. 1, pp. 172–176, 2000.
[77]
J. Bart, H. J. M. Groen, N. H. Hendrikse, W. T. A. van der Graaf, W. Vaalburg, and E. G. E. de Vries, “The blood-brain barrier and oncology: new insights into function and modulation,” Cancer Treatment Reviews, vol. 26, no. 6, pp. 449–462, 2000.
[78]
W. F. Hickey, “Leukocyte traffic in the central nervous system: the participants and their roles,” Seminars in Immunology, vol. 11, no. 2, pp. 125–137, 1999.
[79]
A. Flügel, M. Willem, T. Berkowicz, and H. Wekerle, “Gene transfer into CD4+ T lymphocytes: green fluorescent protein- engineered, encephalitogenic T cells illuminate brain autoimmune responses,” Nature Medicine, vol. 5, no. 7, pp. 843–847, 1999.
[80]
R. B. Fritz, X. Wang, and M. L. Zhao, “The fate of adoptively transferred quiescent encephalitogenic T cells in normal and antigen-tolerized mice,” Journal of Neuroimmunology, vol. 107, no. 1, pp. 66–72, 2000.
[81]
M. Kerschensteiner, E. Gallmeier, L. Behrens et al., “Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?” Journal of Experimental Medicine, vol. 189, no. 5, pp. 865–870, 1999.
[82]
J. Bauer, M. Bradl, W. F. Hickey et al., “T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend on antigen recognition,” The American Journal of Pathology, vol. 153, no. 3, pp. 715–724, 1998.
[83]
A. Flügel, F. W. Schwaiger, H. Neumann et al., “Neuronal FasL induces cell death of encephalitogenic T lymphocytes,” Brain Pathology, vol. 10, no. 3, pp. 353–364, 2000.
[84]
G. C. Suvannavejh, M. C. Dal Canto, L. A. Matis, and S. D. Miller, “Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis,” Journal of Clinical Investigation, vol. 105, no. 2, pp. 223–231, 2000.
[85]
D. N. Irani, “Brain-derived gangliosides induce cell cycle arrest in a murine T cell line,” Journal of Neuroimmunology, vol. 87, no. 1-2, pp. 11–16, 1998.
[86]
Z. Qing, D. Sewell, M. Sandor, and Z. Fabry, “Antigen-specific T cell trafficking into the central nervous system,” Journal of Neuroimmunology, vol. 105, no. 2, pp. 169–178, 2000.
[87]
E. Albesiano, J. E. Han, and M. Lim, “Mechanisms of Local Immunoresistance in Glioma,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 17–29, 2010.
[88]
A. Facoetti, R. Nano, P. Zelini et al., “Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors,” Clinical Cancer Research, vol. 11, no. 23, pp. 8304–8311, 2005.
[89]
D. Gabrilovich, “Mechanisms and functional significance of tumour-induced dendritic-cell defects,” Nature Reviews Immunology, vol. 4, no. 12, pp. 941–952, 2004.
[90]
R. Lang, D. Patel, J. J. Morris, R. L. Rutschman, and P. J. Murray, “Shaping gene expression in activated and resting primary macrophages by IL-10,” Journal of Immunology, vol. 169, no. 5, pp. 2253–2263, 2002.
[91]
A. Mancino and T. Lawrence, “Nuclear factor-κB and tumor-associated macrophages,” Clinical Cancer Research, vol. 16, no. 3, pp. 784–789, 2010.
[92]
E. C. Brantley and E. N. Benveniste, “Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas,” Molecular Cancer Research, vol. 6, no. 5, pp. 675–684, 2008.
[93]
T. di Tomaso, S. Mazzoleni, E. Wang et al., “Immunobiological characterization of cancer stem cells isolated from glioblastoma patients,” Clinical Cancer Research, vol. 16, no. 3, pp. 800–813, 2010.
[94]
M. P. Gustafson, Y. Lin, K. C. New et al., “Systemic immune suppression in glioblastoma: the interplay between CD14+HLA- monocytes, tumor factors, and dexamethasone,” Neuro-Oncology, vol. 12, no. 7, pp. 631–644, 2010.
[95]
Y. T. Chen, M. J. Scanlan, U. Sahin et al., “A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1914–1918, 1997.
[96]
T. Kuramoto, “Detection of MAGE-1 tumor antigen in brain tumor,” Kurume Medical Journal, vol. 44, no. 1, pp. 43–51, 1997.
[97]
R. Ueda, K. Yoshida, Y. Kawakami, T. Kawase, and M. Toda, “Expression of a transcriptional factor, SOX6, in human gliomas,” Brain Tumor Pathology, vol. 21, no. 1, pp. 35–38, 2004.
[98]
D. D. J. Chi, R. E. Merchant, R. Rand et al., “Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas,” The American Journal of Pathology, vol. 150, no. 6, pp. 2143–2152, 1997.
[99]
G. Liu, H. Ying, G. Zeng, C. J. Wheeler, K. L. Black, and J. S. Yu, “HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells,” Cancer Research, vol. 64, no. 14, pp. 4980–4986, 2004.
[100]
F. Okano, W. J. Storkus, W. H. Chambers, I. F. Pollack, and H. Okada, “Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain,” Clinical Cancer Research, vol. 8, no. 9, pp. 2851–2855, 2002.
[101]
M. Hatano, J. Eguchi, T. Tatsumi et al., “EphA2 as a glioma-associated antigen: a novel target for glioma vaccines,” Neoplasia, vol. 7, no. 8, pp. 717–722, 2005.
[102]
M. Jin, Y. Komohara, S. Shichijo et al., “Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients,” Oncology Reports, vol. 19, no. 5, pp. 1277–1283, 2008.
[103]
G. Liu, J. S. Yu, G. Zeng et al., “AIM-2: a novel tumor antigen is expressed and presented by human glioma cells,” Journal of Immunotherapy, vol. 27, no. 3, pp. 220–226, 2004.
[104]
T. Hashiba, S. Izumoto, N. Kagawa et al., “Expression of WT1 protein and correlation with cellular proliferation in glial tumors,” Neurologia Medico-Chirurgica, vol. 47, no. 4, pp. 165–170, 2007.
[105]
Y. Nonaka, N. Tsuda, S. Shichijo et al., “Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors,” Tissue Antigens, vol. 60, no. 4, pp. 319–327, 2002.
[106]
K. Murayama, T. Kobayashi, T. Imaizumi et al., “Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides,” Journal of Immunotherapy, vol. 23, no. 5, pp. 511–518, 2000.
[107]
M. Schmitz, R. Wehner, S. Stevanovic et al., “Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11,” Cancer Letters, vol. 245, no. 1-2, pp. 331–336, 2007.
[108]
M. Harada, Y. Ishihara, K. Itoh, and R. Yamanaka, “Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients,” Oncology Reports, vol. 17, no. 3, pp. 629–636, 2007.
[109]
M. A. Cheever, J. P. Allison, A. S. Ferris et al., “The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research,” Clinical Cancer Research, vol. 15, no. 17, pp. 5323–5337, 2009.
[110]
S. A. Rosenberg, “A new era for cancer immunotherapy based on the genes that encode cancer antigens,” Immunity, vol. 10, no. 3, pp. 281–287, 1999.
[111]
H. E. Fuchs, G. E. Archer, O. M. Colvin et al., “Activity of intrathecal 4-hydroperoxycyclophosphamide in a nude rat model of human neoplastic meningitis,” Cancer Research, vol. 50, no. 6, pp. 1954–1959, 1990.
[112]
E. D. Day, S. Lassiter, B. Woodhall, J. L. Mahaley, and M. S. Mahaley, “The localization of radioantibodies in human brain tumors. I. Preliminary exploration,” Cancer Research, vol. 25, no. 6, pp. 773–778, 1965.
[113]
D. S. Bidros and M. A. Vogelbaum, “Novel drug delivery strategies in neuro-oncology,” Neurotherapeutics, vol. 6, no. 3, pp. 539–546, 2009.
[114]
N. A. de Vries, J. H. Beijnen, W. Boogerd, and O. Van Tellingen, “Blood-brain barrier and chemotherapeutic treatment of brain tumors,” Expert Review of Neurotherapeutics, vol. 6, no. 8, pp. 1199–1209, 2006.
[115]
D. D. Bigner, M. Brown, R. E. Coleman et al., “Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F(ab')2—a preliminary report,” Journal of Neuro-Oncology, vol. 24, no. 1, pp. 109–122, 1995.
[116]
S. N. Kurpad, X. G. Zhao, C. J. Wikstrand, S. K. Batra, R. E. McLendon, and D. D. Bigner, “Tumor antigens in astrocytic gliomas,” Glia, vol. 15, no. 3, pp. 244–256, 1995.
[117]
P. Riva, A. Arista, G. Franceschi et al., “Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with131I: comparison of the results obtained in recurrent and newly diagnosed tumors,” Cancer Research, vol. 55, no. 23, supplement, pp. 5952s–5956s, 1995.
[118]
J. E. Murphy-Ullrich, V. A. Lightner, I. Aukhil, Y. Z. Yan, H. P. Erickson, and M. Hook, “Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin,” Journal of Cell Biology, vol. 115, no. 4, pp. 1127–1136, 1991.
[119]
J. L. Eller, S. L. Longo, D. J. Hicklin et al., “Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme,” Neurosurgery, vol. 51, no. 4, pp. 1005–1014, 2002.
[120]
B. Neyns, J. Sadones, E. Joosens et al., “Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma,” Annals of Oncology, vol. 20, no. 9, pp. 1596–1603, 2009.
[121]
C. J. Wikstrand, R. E. McLendon, A. H. Friedman, and D. D. Bigner, “Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII,” Cancer Research, vol. 57, no. 18, pp. 4130–4140, 1997.
[122]
A. M. Scott, F. T. Lee, N. Tebbutt et al., “Erratum: a phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 4071–4076, 2007.
[123]
S. K. Jacobs, D. J. Wilson, P. L. Kornblith, and E. A. Grimm, “Interleukin-2 and autologous lymphokine-activated killer cells in the treatment of malignant glioma. Preliminary report,” Journal of Neurosurgery, vol. 64, no. 5, pp. 743–749, 1986.
[124]
S. Yoshida, R. Tanaka, N. Takai, and K. Ono, “Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors,” Cancer Research, vol. 48, no. 17, pp. 5011–5016, 1988.
[125]
R. E. Merchant, L. H. Merchant, S. H. S. Cook, D. W. McVicar, and H. F. Young, “Intralesional infusion of lymphokine-activated killer (LAK) cells and recombinant Interleukin-2 (rIL-2) for the treatment of patients with malignant brain tumor,” Neurosurgery, vol. 23, no. 6, pp. 725–732, 1988.
[126]
D. Barba, S. C. Saris, C. Holder, S. A. Rosenberg, and E. H. Oldfield, “Intratumoral LAK cell and interleukin-2 therapy of human gliomas,” Journal of Neurosurgery, vol. 70, no. 2, pp. 175–182, 1989.
[127]
A. Boiardi, A. Silvani, P. A. Ruffini et al., “Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients,” Cancer Immunology Immunotherapy, vol. 39, no. 3, pp. 193–197, 1994.
[128]
C. A. Kruse, P. M. Schiltz, D. Bellgrau, Q. Kong, and B. K. Kleinschmidt-DeMasters, “Intracranial administrations of single or multiple source allogeneic cytotoxic T lymphocytes: chronic therapy for primary brain tumors,” Journal of Neuro-Oncology, vol. 19, no. 2, pp. 161–168, 1994.
[129]
R. L. Hayes, M. Koslow, E. M. Hiesiger, et al., “Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma,” Cancer, vol. 76, no. 5, pp. 840–852, 1995.
[130]
F. P. Holladay, T. Heitz-Turner, W. L. Bayer, and G. W. Wood, “Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with Grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 179–189, 1996.
[131]
G. E. Plautz, G. H. Barnett, D. W. Miller et al., “Systemic T cell adoptive immunotherapy of malignant gliomas,” Journal of Neurosurgery, vol. 89, no. 1, pp. 42–51, 1998.
[132]
L. Bracci, F. Moschella, P. Sestili et al., “Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration,” Clinical Cancer Research, vol. 13, no. 2, pp. 644–653, 2007.
[133]
K. S. Kahlon, C. Brown, L. J. N. Cooper, A. Raubitschek, S. J. Forman, and M. C. Jensen, “Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells,” Cancer Research, vol. 64, no. 24, pp. 9160–9166, 2004.
[134]
N. Ahmed, V. S. Salsman, Y. Kew et al., “HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors,” Clinical Cancer Research, vol. 16, no. 2, pp. 474–485, 2010.
[135]
R. Yamanaka, “Cell- and peptide-based immunotherapeutic approaches for glioma,” Trends in Molecular Medicine, vol. 14, no. 5, pp. 228–235, 2008.
[136]
Y. Kawakami and S. A. Rosenberg, “Human tumor antigens recognized by T-cells,” Immunologic Research, vol. 16, no. 4, pp. 313–339, 1997.
[137]
J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, “Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells,” Nature Medicine, vol. 3, no. 5, pp. 558–561, 1997.
[138]
B. Thurner, I. Haendle, C. R?der et al., “Vaccination with Mage-3A1 peptide-pulsed nature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma,” Journal of Experimental Medicine, vol. 190, no. 11, pp. 1669–1678, 1999.
[139]
A. Kugler, G. Stuhler, P. Walden et al., “Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids,” Nature Medicine, vol. 6, no. 3, pp. 332–336, 2000.
[140]
P. A. Lodge, L. A. Jones, R. A. Bader, G. P. Murphy, and M. L. Salgaller, “Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial,” Cancer Research, vol. 60, no. 4, pp. 829–833, 2000.
[141]
J. S. Yu, C. J. Wheeler, P. M. Zeltzer et al., “Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration,” Cancer Research, vol. 61, no. 3, pp. 842–847, 2001.
[142]
T. Kikuchi, Y. Akasaki, M. Irie, S. Homma, T. Abe, and T. Ohno, “Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells,” Cancer Immunology, Immunotherapy, vol. 50, no. 7, pp. 337–344, 2001.
[143]
H. Ardon, S. W. van Gool, T. Verschuere, et al., “Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial,” Cancer Immunol Immunother, vol. 61, no. 11, pp. 2033–2044, 2012.
[144]
S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004.
[145]
J. H. Sampson, G. E. Archer, D. A. Mitchell, A. B. Heimberger, and D. D. Bigner, “Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma,” Seminars in Immunology, vol. 20, no. 5, pp. 267–275, 2008.
[146]
R. Stupp, W. P. Mason, M. J. van den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005.
[147]
Y. Oka, A. Tsuboi, O. A. Elisseeva, K. Udaka, and H. Sugiyama, “WT1 as a novel target antigen for cancer immunotherapy,” Current Cancer Drug Targets, vol. 2, no. 1, pp. 45–54, 2002.
[148]
T. Mine, Y. Sato, M. Noguchi et al., “Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses,” Clinical Cancer Research, vol. 10, no. 3, pp. 929–937, 2004.
[149]
Q. Xu, X. Yuan, and J. S. Yu, “Glioma stem cell research for the development of immunotherapy,” Advances in Experimental Medicine and Biology, vol. 746, pp. 216–225, 2012.
[150]
Z. Li, J. W. Lee, D. Mukherjee, et al., “Immunotherapy targeting glioma stem cells—insights and perspectives,” Expert Opinion on Biological Therapy, vol. 12, no. 2, pp. 165–178, 2012.
[151]
M. Toda, “Cancer vaccine for brain tumors and brain tumor antigens,” Cancer Therapy, vol. 2, pp. 21–26, 2004.
[152]
R. Ueda, Y. Iizuka, K. Yoshida, T. Kawase, Y. Kawakami, and M. Toda, “Identification of a human glioma antigen, SOX6, recognized by patients' sera,” Oncogene, vol. 23, no. 7, pp. 1420–1427, 2004.
[153]
J. J. Vredenburgh, A. Desjardins, J. E. Herndon 2nd et al., “Bevacizumab plus irinotecan in recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 25, no. 30, pp. 4722–4729, 2007.
[154]
A. Lai, A. Tran, P. L. Nghiemphu et al., “Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 142–148, 2011.
[155]
M. C. Chamberlain and S. K. Johnston, “Salvage therapy with single agent bevacizumab for recurrent glioblastoma,” Journal of Neuro-Oncology, vol. 96, no. 2, pp. 259–269, 2010.
[156]
A. D. Norden, G. S. Young, K. Setayesh et al., “Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence,” Neurology, vol. 70, no. 10, pp. 779–787, 2008.
[157]
H. Hayashi, T. Kurata, Y. Fujisaka, et al., “Phase I trial of OTS11101, an anti-angiogenic vaccine targeting vascular endothelial growth factor receptor 1 in solid tumor,” Cancer Science, vol. 104, no. 1, pp. 98–104, 2013.
[158]
M. Miyazawa, R. Ohsawa, T. Tsunoda et al., “Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer,” Cancer Science, vol. 101, no. 2, pp. 433–439, 2010.
[159]
A. Matejuk, Q. Leng, S. T. Chou, and A. J. Mixson, “Vaccines targeting the neovasculature of tumors,” Vascular Cell, vol. 3, article 7, 2011.
[160]
D. J. Hicklin, F. M. Marincola, and S. Ferrone, “HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story,” Molecular Medicine Today, vol. 5, no. 4, pp. 178–186, 1999.
[161]
S. Yasuda, I. Tsuchiya, K. Okada, et al., “Significant clinical response of advanced colon cancer to peptide vaccine therapy: a case report,” The Tokai Journal of Experimental and Clinical Medicine, vol. 37, no. 2, pp. 57–61, 2012.