There is a strong relationship between metabolism and immunity, which can become deleterious under conditions of metabolic stress. Obesity, considered a chronic inflammatory disease, is one example of this link. Chronic inflammation is increasingly being recognized as an etiology in several cancers, particularly those of epithelial origin, and therefore a potential link between obesity and cancer. In this review, the connection between the different factors that can lead to the chronic inflammatory state in the obese individual, as well as their effect in tumorigenesis, is addressed. Furthermore, the association between obesity, inflammation, and esophageal, liver, colon, postmenopausal breast, and endometrial cancers is discussed. 1. Introduction Cancer development is complex and involves different phases commonly referred to as initiation, promotion, and progression [1]. It is believed that during the initiation phase, genetic mutations accumulate that lead to irreversible cellular changes. Some of the most significant changes during this phase include activation of protooncogenes (e.g., ras, bcl2, myc, abl) and inactivation of tumor suppressor genes (e.g., p53, Rb) [1]. These genome-level events give a selective growth or survival advantage to the cell, which confer on cancer cells their intrinsic properties, including self-sufficient proliferation, insensitivity to antiproliferative signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, invasion, and metastasis [2]. Tumor development is promoted by the clonal expansion of these changed cells, and it is followed by the progression phase, which involves tumor growth and metastasis [3]. Determining what causes a particular cancer is a complex task. Many things are known to increase the risk of cancer, including environmental pollutants [4–6], certain infections [7, 8], certain metabolic disorders [9, 10], and so forth. For example, skin cancer has been linked to radiation therapy; viral infections such as the human papilloma virus; exposure to UV radiation; aging; skin color; diet; smoking (reviewed in [11]). Cancer cell initiation, promotion, and progression are also intimately linked to their microenvironment. The environment of the cells can directly affect their genetic make-up or, combined with genetic predisposition, help in the cancer development. The tumor infiltrate, composed of angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and immune cells, have been shown to contribute actively to tumorigenesis [12]. The
References
[1]
E. Shacter and S. A. Weitzman, “Chronic inflammation and cancer,” Oncology, vol. 16, no. 2, pp. 217–232, 2002.
[2]
D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[3]
S. Rakoff-Nahoum, “Why cancer and inflammation?” Yale Journal of Biology and Medicine, vol. 79, no. 3-4, pp. 123–130, 2006.
[4]
M. E. Ramos-Nino, J. R. Testa, D. A. Altomare et al., “Cellular and molecular parameters of mesothelioma,” Journal of Cellular Biochemistry, vol. 98, no. 4, pp. 723–734, 2006.
[5]
C. D. Woodworth, B. T. Mossman, and J. E. Craighead, “Squamous metaplasia of the respiratory tract. Possible pathogenic role in asbestos-associated bronchogenic carcinoma,” Laboratory Investigation, vol. 48, no. 5, pp. 578–584, 1983.
[6]
P. T. Scheepers and R. C. Vermeulen, “Diesel engine exhaust classified as a human lung carcinogen. How will this affect occupational exposures?” Occupational and Environmental Medicine, vol. 69, no. 10, pp. 691–693, 2012.
[7]
D. P. Zandberg, R. Bhargava, S. Badin, and K. J. Cullen, “The role of human papillomavirus in nongenital cancers,” A Cancer Journal for Clinicians, vol. 63, no. 1, pp. 57–81, 2013.
[8]
E. Smolle, E. Z?hrer, K. Bettermann, and J. Haybaeck, “Viral hepatitis induces hepatocellular cancer: what can we learn from epidemiology comparing iran and worldwide findings?” Hepatitis Monthly, vol. 12, no. 10 HCC, Article ID e7879, 2012.
[9]
W. Gu, C. Chen, and K. N. Zhao, “Obesity-associated endometrial and cervical cancers,” Frontiers in Bioscience, vol. E5, pp. 109–118, 2013.
[10]
E. Orgel and S. D. Mittelman, “The links between insulin resistance, diabetes, and cancer,” Current Diabetes Reports, vol. 13, no. 2, pp. 213–222, 2013.
[11]
R. N. Saladi and A. N. Persaud, “The causes of skin cancer: a comprehensive review,” Drugs of Today, vol. 41, no. 1, pp. 37–53, 2005.
[12]
N. E. Sounni and A. Noel, “Targeting the tumor microenvironment for cancer therapy,” Clinical Chemistry, vol. 59, no. 1, pp. 85–93, 2013.
[13]
F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001.
[14]
D. W. Kamp, E. Shacter, and S. A. Weitzman, “Chronic inflammation and cancer: the role of the mitochondria,” Oncology, vol. 25, no. 5, pp. 400–413, 2011.
[15]
L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002.
[16]
D. B. Vendramini-Costa and J. E. Carvalho, “Molecular link mechanisms between inflammation and cancer,” Current Pharmaceutical Design, vol. 18, no. 26, pp. 3831–3852, 2012.
[17]
H. Kuper, H. O. Adami, and D. Trichopoulos, “Infections as a major preventable cause of human cancer,” Journal of Internal Medicine, vol. 248, no. 3, pp. 171–183, 2000.
[18]
A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008.
[19]
J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006.
[20]
C. H. Koehne and R. N. Dubois, “COX-2 inhibition and colorectal cancer,” Seminars in Oncology, vol. 31, no. 7, pp. 12–21, 2004.
[21]
F. M. Shebl, L. C. Sakoda, A. Black, J. Koshiol, R. Grubb, T. R. Church, et al., “Aspirin but not ibuprofen use is associated with reduced risk of prostate cancer: a PLCO study,” British Journal of Cancer, vol. 107, no. 1, pp. 207–214, 2012.
[22]
A. J. Walker, M. J. Grainge, and T. R. Card, “Aspirin and other non-steroidal anti-inflammatory drug use and colorectal cancer survival: a cohort study,” British Journal of Cancer, vol. 107, no. 9, pp. 1602–1607, 2012.
[23]
H. H. Lee, Y. T. Tsan, W. C. Ho, M. H. Lin, C. H. Lee, C. D. Tseng, et al., “Angiotensin-converting enzyme inhibitors enhance the effect of cyclooxygenase inhibitors on breast cancer: a nationwide case-control study,” Journal of Hypertension, vol. 30, no. 12, pp. 2432–2439, 2012.
[24]
M. E. Ramos-Nino, C. D. MacLean, and B. Littenberg, “Association of angiotensin-converting enzyme inhibitor therapy and comorbidity in diabetes: results from the Vermont diabetes information system,” BMC Endocrine Disorders, vol. 8, article 17, 2008.
[25]
C. E. Holmes, M. E. Ramos-Nino, and B. Littenberg, “An association between anti-platelet drug use and reduced cancer prevalence in diabetic patients: results from the Vermont Diabetes Information System Study,” BMC Cancer, vol. 10, article 289, 2010.
[26]
L. Radoi, S. Paget-Bailly, D. Cyr, A. Papadopoulos, F. Guida, A. Schmaus, et al., “Tobacco smoking, alcohol drinking and risk of oral cavity cancer by subsite: results of a French population-based case-control study, the ICARE study,” European Journal of Cancer Prevention, vol. 22, no. 3, pp. 268–276, 2013.
[27]
L. Radoi and D. Luce, “A review of risk factors for oral cavity cancer: the importance of a standardized case definition,” Community Dentistry and Oral Epidemiology, vol. 41, no. 2, pp. 97–109, 2013.
[28]
S. S. Hecht, “Lung carcinogenesis by tobacco smoke,” International Journal of Cancer, vol. 131, no. 12, pp. 2724–2732, 2012.
[29]
P. Grewal and V. A. Viswanathen, “Liver cancer and alcohol,” Clinical Liver Disease, vol. 16, no. 4, pp. 839–850, 2012.
[30]
B. J. Vennervald and K. Polman, “Helminths and malignancy,” Parasite Immunology, vol. 31, no. 11, pp. 686–696, 2009.
[31]
G. Khan, “Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin's lymphoma?” Experimental Hematology, vol. 34, no. 4, pp. 399–406, 2006.
[32]
A. Lamb and L. F. Chen, “Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer,” Journal of Cellular Biochemistry, vol. 114, no. 3, pp. 491–497, 2013.
[33]
F. Liotti, C. Visciano, and R. M. Melillo, “Inflammation in thyroid oncogenesis,” American Journal of Cancer Research, vol. 2, no. 3, pp. 286–297, 2012.
[34]
A. Nicholson and J. Jankowski, “Acid reflux and oesophageal cancer,” Recent Results in Cancer Research, vol. 185, pp. 65–82, 2011.
[35]
K. S. Sfanos and A. M. De Marzo, “Prostate cancer and inflammation: the evidence,” Histopathology, vol. 60, no. 1, pp. 199–215, 2012.
[36]
S. Ghosh and K. Ashcraft, “An IL-6 link between obesity and cancer,” Frontiers in Bioscience, vol. 5, pp. 461–478, 2013.
[37]
E. L. Heinrich, T. C. Walser, K. Krysan et al., “The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis,” Cancer Microenviron, vol. 5, no. 1, pp. 5–18, 2012.
[38]
K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005.
[39]
M. I. Goran and T. L. Alderete, “Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity,” Nestlé Nutrition Institute Workshop Series, vol. 73, pp. 49–66, 2012.
[40]
S. D. Hursting and S. M. Dunlap, “Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue,” Annals of the New York Academy of Sciences, vol. 1271, pp. 82–87, 2012.
[41]
R. B. Ervin, “Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006,” National Health Statistics Reports, no. 13, pp. 1–7, 2009.
[42]
A. E. Harvey, L. M. Lashinger, and S. D. Hursting, “The growing challenge of obesity and cancer: an inflammatory issue,” Annals of the New York Academy of Sciences, vol. 1229, no. 1, pp. 45–52, 2011.
[43]
N. Halberg, I. Wernstedt-Asterholm, and P. E. Scherer, “The adipocyte as an endocrine cell,” Endocrinology and Metabolism Clinics of North America, vol. 37, no. 3, pp. 753–768, 2008.
[44]
S. Gesta, Y. H. Tseng, and C. R. Kahn, “Developmental origin of fat: tracking obesity to its source,” Cell, vol. 131, no. 2, pp. 242–256, 2007.
[45]
S. E. Wozniak, L. L. Gee, M. S. Wachtel, and E. E. Frezza, “Adipose tissue: the new endocrine organ? a review article,” Digestive Diseases and Sciences, vol. 54, no. 9, pp. 1847–1856, 2009.
[46]
C. E. Juge-Aubry, E. Henrichot, and C. A. Meier, “Adipose tissue: a regulator of inflammation,” Best Practice and Research, vol. 19, no. 4, pp. 547–566, 2005.
[47]
S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O'Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009.
[48]
G. Fruhbeck, J. Gómez-Ambrosi, F. J. Muruzábal, and M. A. Burrell, “The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation,” American Journal of Physiology, vol. 280, no. 6, pp. E827–E847, 2001.
[49]
A. Dicker, K. Le Blanc, G. ?str?m et al., “Functional studies of mesenchymal stem cells derived from adult human adipose tissue,” Experimental Cell Research, vol. 308, no. 2, pp. 283–290, 2005.
[50]
J. T. Crossno, S. M. Majka, T. Grazia, R. G. Gill, and D. J. Klemm, “Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3220–3228, 2006.
[51]
G. J. Hausman and D. B. Hausman, “Search for the preadipocyte progenitor cell,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3103–3106, 2006.
[52]
K. Jaworski, E. Sarkadi-Nagy, R. E. Duncan, M. Ahmadian, and H. S. Sul, “Regulation of Triglyceride Metabolism. IV. Hormonal regulation of lipolysis in adipose tissue,” American Journal of Physiology, vol. 293, no. 1, pp. G1–G4, 2007.
[53]
A. S. Greenberg, J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-Mackie, and C. Londos, “Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11341–11346, 1991.
[54]
R. A. Weisiger, “Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands,” Molecular and Cellular Biochemistry, vol. 239, no. 1-2, pp. 35–43, 2002.
[55]
R. A. Weisiger and S. D. Zucker, “Transfer of fatty acids between intracellular membranes: roles of soluble binding proteins, distance, and time,” American Journal of Physiology, vol. 282, no. 1, pp. G105–G115, 2002.
[56]
N. S. Tan, N. S. Shaw, N. Vinckenbosch et al., “Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription,” Molecular and Cellular Biology, vol. 22, no. 14, pp. 5114–5127, 2002.
[57]
V. Ceperuelo-Mallafré, M. Miranda, M. R. Chacón et al., “Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3640–3645, 2007.
[58]
A. H. Ali, C. Koutsari, M. Mundi, M. D. Stegall, J. K. Heimbach, S. J. Taler, et al., “Free fatty acid storage in human visceral and subcutaneous adipose tissue: role of adipocyte proteins,” Diabetes, vol. 60, no. 9, pp. 2300–2307, 2011.
[59]
L. A. Tartaglia, M. Dembski, X. Weng et al., “Identification and expression cloning of a leptin receptor, OB-R,” Cell, vol. 83, no. 7, pp. 1263–1271, 1995.
[60]
J. D. Mcgarry, “Does leptin lighten the problem of obesity?” Current Biology, vol. 5, no. 12, pp. 1342–1344, 1995.
[61]
R. C. Frederich, A. Hamann, S. Anderson, B. Lollmann, B. B. Lowell, and J. S. Flier, “Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action,” Nature Medicine, vol. 1, no. 12, pp. 1311–1314, 1995.
[62]
M. Mapfei, J. Halaas, E. Ravussin et al., “Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects,” Nature Medicine, vol. 1, no. 11, pp. 1155–1161, 1995.
[63]
O. A. Macdougald, C. S. Hwang, H. Fan, and M. D. Lane, “Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9034–9037, 1995.
[64]
V. Koivisto, “Reducing weight with leptin,” Duodecim, vol. 111, no. 18, pp. 1731–1733, 1995.
[65]
D. W. Haslam and W. P. T. James, “Obesity,” The Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005.
[66]
M. Zeyda and T. M. Stulnig, “Adipose tissue macrophages,” Immunology Letters, vol. 112, no. 2, pp. 61–67, 2007.
[67]
M. Zeyda, D. Farmer, J. Todoric et al., “Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production,” International Journal of Obesity, vol. 31, no. 9, pp. 1420–1428, 2007.
[68]
S. Gordon, “Macrophage heterogeneity and tissue lipids,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 89–93, 2007.
[69]
D. E. Moller and J. P. Berger, “Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation,” International Journal of Obesity, vol. 27, no. 3, pp. S17–S21, 2003.
[70]
S. B. Joseph, A. Castrillo, B. A. Laffitte, D. J. Mangelsdorf, and P. Tontonoz, “Reciprocal regulation of inflammation and lipid metabolism by liver X receptors,” Nature Medicine, vol. 9, no. 2, pp. 213–219, 2003.
[71]
C. Caruso, C. R. Balistreri, and G. Candore, “The role of adipose tissue and adipokines in obesity-related inflammatory diseases,” Mediators of Inflammation, vol. 2010, Article ID 802078, 2010.
[72]
C. N. Lumeng, J. B. Delproposto, D. J. Westcott, and A. R. Saltiel, “Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes,” Diabetes, vol. 57, no. 12, pp. 3239–3246, 2008.
[73]
V. Bourlier, A. Zakaroff-Girard, A. Miranville et al., “Remodeling phenotype of human subcutaneous adipose tissue macrophages,” Circulation, vol. 117, no. 6, pp. 806–815, 2008.
[74]
V. Subramanian and A. W. Ferrante, “Obesity, inflammation, and macrophages,” Nestle Nutrition Workshop Series, vol. 63, pp. 151–162, 2009.
[75]
J. Chudek and A. Wi?cek, “Adipose tissue, inflammation and endothelial dysfunction,” Pharmacological Reports, vol. 58, pp. 81–88, 2006.
[76]
C. Sengenès, A. Miranville, K. Lolmède, C. A. Curat, and A. Bouloumié, “The role of endothelial cells in inflamed adipose tissue,” Journal of Internal Medicine, vol. 262, no. 4, pp. 415–421, 2007.
[77]
S. Hummasti and G. S. Hotamisligil, “Endoplasmic reticulum stress and inflammation in obesity and diabetes,” Circulation Research, vol. 107, no. 5, pp. 579–591, 2010.
[78]
M. Lafontan and M. Berlan, “Do regional differences in adipocyte biology provide new pathophysiological insights?” Trends in Pharmacological Sciences, vol. 24, no. 6, pp. 276–283, 2003.
[79]
K. L. Spalding, E. Arner, P. O. Westermark et al., “Dynamics of fat cell turnover in humans,” Nature, vol. 453, no. 7196, pp. 783–787, 2008.
[80]
T. Skurk, C. Alberti-Huber, C. Herder, and H. Hauner, “Relationship between adipocyte size and adipokine expression and secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1023–1033, 2007.
[81]
M. Jern?s, J. Palming, K. Sj?holm et al., “Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression,” The FASEB Journal, vol. 20, no. 9, pp. 1540–1542, 2006.
[82]
R. H. Unger, “Lipotoxic diseases,” Annual Review of Medicine, vol. 53, pp. 319–336, 2002.
[83]
S. Taleb, R. Cancello, K. Clément, and D. Lacasa, “Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation,” Endocrinology, vol. 147, no. 10, pp. 4950–4959, 2006.
[84]
Y. Xiao, H. Junfeng, L. Tianhong, W. Lu, C. Shulin, Z. Yu, et al., “Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 11, pp. 4520–4527, 2006.
[85]
J. G. Neels, T. Thinnes, and D. J. Loskutoff, “Angiogenesis in an in vivo model of adipose tissue development,” FASEB Journal, vol. 18, no. 9, pp. 983–985, 2004.
[86]
S. Nishimura, I. Manabe, M. Nagasaki et al., “Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels,” Diabetes, vol. 56, no. 6, pp. 1517–1526, 2007.
[87]
E. Br?kenhielm, R. Cao, B. Gao et al., “Angiogenesis inhibitor, TNP-470, prevents diet induced and genetic obesity in mice,” Circulation Research, vol. 94, no. 12, pp. 1579–1588, 2004.
[88]
M. G. Kolonin, P. K. Saha, L. Chan, R. Pasqualini, and W. Arap, “Reversal of obesity by targeted ablation of adipose tissue,” Nature Medicine, vol. 10, no. 6, pp. 625–632, 2004.
[89]
M. A. Rupnick, D. Panigrahy, C. Y. Zhang et al., “Adipose tissue mass can be regulated through the vasculature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10730–10735, 2002.
[90]
N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, et al., “Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation,” Diabetes, vol. 56, no. 4, pp. 901–911, 2007.
[91]
J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” American Journal of Physiology, vol. 293, no. 4, pp. E1118–E1128, 2007.
[92]
M. E. Rausch, S. Weisberg, P. Vardhana, and D. V. Tortoriello, “Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration,” International Journal of Obesity, vol. 32, no. 3, pp. 451–463, 2008.
[93]
P. Wang, E. Mariman, J. Keijer et al., “Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines,” Cellular and Molecular Life Sciences, vol. 61, no. 18, pp. 2405–2417, 2004.
[94]
J. V. Silha, M. Krsek, P. Sucharda, and L. J. Murphy, “Angiogenic factors are elevated in overweight and obese individuals,” International Journal of Obesity, vol. 29, no. 11, pp. 1308–1314, 2005.
[95]
C. H. Cho, Y. J. Koh, J. Han et al., “Angiogenic role of LYVE-1-positive macrophages in adipose tissue,” Circulation Research, vol. 100, no. 4, pp. e47–e57, 2007.
[96]
C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007.
[97]
P. Trayhurn and I. S. Wood, “Adipokines: inflammation and the pleiotropic role of white adipose tissue,” British Journal of Nutrition, vol. 92, no. 3, pp. 347–355, 2004.
[98]
J. Yin, Z. Gao, Q. He, D. Zhou, Z. Guo, and J. Ye, “Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue,” American Journal of Physiology, vol. 296, no. 2, pp. E333–E342, 2009.
[99]
B. Wang, I. S. Wood, and P. Trayhurn, “Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes,” Pflugers Archiv European Journal of Physiology, vol. 455, no. 3, pp. 479–492, 2007.
[100]
J. Ye, “Emerging role of adipose tissue hypoxia in obesity and insulin resistance,” International Journal of Obesity, vol. 33, no. 1, pp. 54–66, 2009.
[101]
J. Tang, H. Yan, and S. Zhuang, “Inflammation and oxidative stress in obesity-related glomerulopathy,” International Journal of Nephrology, vol. 2012, Article ID 608397, 11 pages, 2012.
[102]
S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004.
[103]
J. F. Keaney, Jr, M. G. Larson et al., et al., “Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 434–439, 2003.
[104]
H. K. Vincent and A. G. Taylor, “Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans,” International Journal of Obesity, vol. 30, no. 3, pp. 400–418, 2006.
[105]
E. Pihl, K. Zilmer, T. Kullisaar, C. Kairane, A. M?gi, and M. Zilmer, “Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes,” International Journal of Obesity, vol. 30, no. 1, pp. 141–146, 2006.
[106]
S. J. Piva, M. M. M. F. Duarte, I. B. M. Da Cruz et al., “Ischemia-modified albumin as an oxidative stress biomarker in obesity,” Clinical Biochemistry, vol. 44, no. 4, pp. 345–347, 2011.
[107]
N. Gletsu-Miller, J. M. Hansen, D. P. Jones et al., “Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery,” Obesity, vol. 17, no. 3, pp. 439–446, 2009.
[108]
C. Chrysohoou, D. B. Panagiotakos, C. Pitsavos et al., “The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 8, pp. 590–597, 2007.
[109]
J. Hartwich, J. Góralska, D. Siedlecka, A. Gruca, M. Trzos, and A. Dembinska-Kiec, “Effect of supplementation with vitamin E and C on plasma hsCRP level and cobalt-albumin binding score as markers of plasma oxidative stress in obesity,” Genes and Nutrition, vol. 2, no. 1, pp. 151–154, 2007.
[110]
R. Cancello and K. Clément, “Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 113, no. 10, pp. 1141–1147, 2006.
[111]
F. Lago, C. Dieguez, J. Gómez-Reino, and O. Gualillo, “Adipokines as emerging mediators of immune response and inflammation,” Nature Clinical Practice Rheumatology, vol. 3, no. 12, pp. 716–724, 2007.
[112]
M. H. Fonseca-Alaniz, J. Takada, M. I. Alonso-Vale, and F. B. Lima, “Adipose tissue as an endocrine organ: from theory to practice,” Jornal de Pediatria, vol. 83, no. 5, pp. S192–203, 2007.
[113]
A. Fernandez-Sanchez, E. Madrigal-Santillán, M. Bautista, J. Esquivel-Soto, á. Morales-González, C. Esquivel-Chirino, et al., “Inflammation, oxidative stress, and obesity,” International Journal of Molecular Sciences, vol. 12, no. 5, pp. 3117–3132, 2011.
[114]
J. D. Morrow, “Is oxidant stress a connection between obesity and atherosclerosis?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 368–370, 2003.
[115]
S. De Ferranti and D. Mozaffarian, “The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences,” Clinical Chemistry, vol. 54, no. 6, pp. 945–955, 2008.
[116]
C. Yu, Y. Chen, G. W. Cline et al., “Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50230–50236, 2002.
[117]
N. I. Khan, L. Naz, and G. Yasmeen, “Obesity: an independent risk factor for systemic oxidative stress,” Pakistan Journal of Pharmaceutical Sciences, vol. 19, no. 1, pp. 62–65, 2006.
[118]
X. Shi, A. Burkart, S. M. Nicoloro, M. P. Czech, J. Straubhaar, and S. Corvera, “Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 30658–30667, 2008.
[119]
C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998.
[120]
J. B. Seo, H. M. Moon, W. S. Kim et al., “Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression,” Molecular and Cellular Biology, vol. 24, no. 8, pp. 3430–3444, 2004.
[121]
C. K. Glass and J. M. Olefsky, “Inflammation and lipid signaling in the etiology of insulin resistance,” Cell Metabolism, vol. 15, no. 5, pp. 635–645, 2012.
[122]
C. B. Clish, J. A. O'Brien, K. Gronert, G. L. Stahl, N. A. Petasis, and C. N. Serhan, “Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8247–8252, 1999.
[123]
A. González-Périz, R. Horrillo, N. Ferré et al., “Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins,” FASEB Journal, vol. 23, no. 6, pp. 1946–1957, 2009.
[124]
C. Godson and H. R. Brady, “Lipoxins: novel anti-inflammatory therapeutics?” Current Opinion in Investigational Drugs, vol. 1, no. 3, pp. 380–385, 2000.
[125]
M. J. Gething and J. Sambrook, “Protein folding in the cell,” Nature, vol. 355, no. 6355, pp. 33–45, 1992.
[126]
U. ?zcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004.
[127]
Y. Nakatani, H. Kaneto, D. Kawamori et al., “Involvement of endoplasmic reticulum stress in insulin resistance and diabetes,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 847–851, 2005.
[128]
M. F. Gregor and G. S. Hotamisligil, “Adipocyte stress: the endoplasmic reticulum and metabolic disease,” Journal of Lipid Research, vol. 48, no. 9, pp. 1905–1914, 2007.
[129]
G. S. Hotamisligil, “Endoplasmic reticulum stress and the inflammatory basis of metabolic disease,” Cell, vol. 140, no. 6, pp. 900–917, 2010.
[130]
H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron, “Perk is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell, vol. 5, no. 5, pp. 897–904, 2000.
[131]
Y. Ma, J. W. Brewer, J. Alan Diehl, and L. M. Hendershot, “Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response,” Journal of Molecular Biology, vol. 318, no. 5, pp. 1351–1365, 2002.
[132]
C. Sidrauski and P. Walter, “The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response,” Cell, vol. 90, no. 6, pp. 1031–1039, 1997.
[133]
J. Shen, X. Chen, L. Hendershot, and R. Prywes, “ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals,” Developmental Cell, vol. 3, no. 1, pp. 99–111, 2002.
[134]
N. Kawasaki, R. Asada, A. Saito, S. Kanemoto, and K. Imaizumi, “Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue,” Scientific Reports, vol. 2, article 799, 2012.
[135]
M. Cnop, F. Foufelle, and L. A. Velloso, “Endoplasmic reticulum stress, obesity and diabetes,” Trends in Molecular Medicine, vol. 18, no. 1, pp. 59–68, 2012.
[136]
P. Jiao, J. Ma, B. Feng et al., “FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways,” Obesity, vol. 19, no. 3, pp. 483–491, 2011.
[137]
P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton, “Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 3071–3084, 2006.
[138]
P. S. Gargalovic, N. M. Gharavi, M. J. Clark, J. Pagnon, W. P. Yang, A. He, et al., “The unfolded protein response is an important regulator of inflammatory genes in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2490–2496, 2006.
[139]
S. Braun, K. Bitton-Worms, and D. LeRoith, “The link between the metabolic syndrome and cancer,” International Journal of Biological Sciences, vol. 7, no. 7, pp. 1003–1015, 2011.
[140]
M. H. Faulds and K. Dahlman-Wright, “Metabolic diseases and cancer risk,” Current Opinion in Oncology, vol. 24, no. 1, pp. 58–61, 2012.
[141]
I. Vucenik and J. P. Stains, “Obesity and cancer risk: evidence, mechanisms, and recommendations,” Annals of the New York Academy of Sciences, vol. 1271, pp. 37–43, 2012.
[142]
O. Kaidar-Person, G. Bar-Sela, and B. Person, “The two major epidemics of the twenty-first century: obesity and cancer,” Obesity Surgery, vol. 21, no. 11, pp. 1792–1797, 2011.
[143]
N. Parekh, U. Chandran, and E. V. Bandera, “Obesity in cancer survival,” Annual Review of Nutrition, vol. 32, pp. 311–342, 2012.
[144]
E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003.
[145]
E. E. Calle and M. J. Thun, “Obesity and cancer,” Oncogene, vol. 23, no. 38, pp. 6365–6378, 2004.
[146]
E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004.
[147]
A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008.
[148]
A. G. Renehan, “Bariatric surgery, weight reduction, and cancer prevention,” The Lancet Oncology, vol. 10, no. 7, pp. 640–641, 2009.
[149]
L. Sj?str?m, A. Gummesson, C. D. Sj?str?m et al., “Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial,” The Lancet Oncology, vol. 10, no. 7, pp. 653–662, 2009.
[150]
D. L. Roberts, C. Dive, and A. G. Renehan, “Biological mechanisms linking obesity and cancer risk: new perspectives,” Annual Review of Medicine, vol. 61, pp. 301–316, 2010.
[151]
E. A. Rondini, A. E. Harvey, J. P. Steibel, S. D. Hursting, and J. I. Fenton, “Energy balance modulates colon tumor growth: interactive roles of insulin and estrogen,” Molecular Carcinogenesis, vol. 50, no. 5, pp. 370–382, 2011.
[152]
S. D. Hursting and N. A. Berger, “Energy balance, host-related factors, and cancer progression,” Journal of Clinical Oncology, vol. 28, no. 26, pp. 4058–4065, 2010.
[153]
S. Margetic, C. Gazzola, G. G. Pegg, and R. A. Hill, “Leptin: a review of its peripheral actions and interactions,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 11, pp. 1407–1433, 2002.
[154]
J. Park and P. E. Scherer, “Leptin and cancer: from cancer stem cells to metastasis,” Endocrine-Related Cancer, vol. 18, no. 4, pp. C25–C29, 2011.
[155]
J. M. Friedman, “Leptin at 14 y of age: an ongoing story,” American Journal of Clinical Nutrition, vol. 89, no. 3, 2009.
[156]
M. Maffei, H. Fei, G. H. Lee et al., “Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 15, pp. 6957–6960, 1995.
[157]
C. Garofalo and E. Surmacz, “Leptin and cancer,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 12–22, 2006.
[158]
S. C. Benoit, D. J. Clegg, R. J. Seeley, and S. C. Woods, “Insulin and leptin as adiposity signals,” Recent Progress in Hormone Research, vol. 59, pp. 267–285, 2004.
[159]
L. Gautron and J. K. Elmquist, “Sixteen years and counting: an update on leptin in energy balance,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2087–2093, 2011.
[160]
J. E. Drew, “Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin,” Proceedings of the Nutrition Society, vol. 71, no. 1, pp. 175–180, 2012.
[161]
Q. Zheng, S. M. Dunlap, J. Zhu, E. Downs-Kelly, J. Rich, S. D. Hursting, et al., “Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival,” Endocrine-Related Cancer, vol. 18, no. 4, pp. 491–503, 2011.
[162]
E. C. Villanueva and M. G. Myers, “Leptin receptor signaling and the regulation of mammalian physiology,” International Journal of Obesity, vol. 32, no. 7, pp. S8–S12, 2008.
[163]
J. Chen, “Multiple signal pathways in obesity-associated cancer,” Obesity Reviews, vol. 12, no. 12, pp. 1063–1070, 2011.
[164]
J. Gao, J. Tian, Y. Lv et al., “Leptin induces functional activation of cyclooxygenase-2 through JAK2/ STAT3, MAPK/ERK, and PI3K/AKT pathways in human endometrial cancer cells,” Cancer Science, vol. 100, no. 3, pp. 389–395, 2009.
[165]
T. Jaffe and B. Schwartz, “Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways,” International Journal of Cancer, vol. 123, no. 11, pp. 2543–2556, 2008.
[166]
D. L. Morris and L. Rui, “Recent advances in understanding leptin signaling and leptin resistance,” American Journal of Physiology, vol. 297, no. 6, pp. E1247–E1259, 2009.
[167]
M. Ishikawa, J. Kitayama, and H. Nagawa, “Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer,” Clinical Cancer Research, vol. 10, no. 13, pp. 4325–4331, 2004.
[168]
C. Garofalo, M. Koda, S. Cascio et al., “Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli,” Clinical Cancer Research, vol. 12, no. 5, pp. 1447–1453, 2006.
[169]
J. M. Howard, P. Beddy, D. Ennis, M. Keogan, G. P. Pidgeon, and J. V. Reynolds, “Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma,” British Journal of Surgery, vol. 97, no. 7, pp. 1020–1027, 2010.
[170]
J. M. Howard, G. P. Pidgeon, and J. V. Reynolds, “Leptin and gastro-intestinal malignancies,” Obesity Reviews, vol. 11, no. 12, pp. 863–874, 2010.
[171]
L. Vona-Davis and D. P. Rose, “Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 189–206, 2007.
[172]
G. A. Bray, “The underlying basis for obesity: relationship to cancer,” Journal of Nutrition, vol. 132, no. 11 Supplement, pp. 3451S–3455S, 2002.
[173]
D. P. Rose, D. Komninou, and G. D. Stephenson, “Obesity, adipocytokines, and insulin resistance in breast cancer,” Obesity Reviews, vol. 5, no. 3, pp. 153–165, 2004.
[174]
A. Stofkova, “Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity,” Endocrine Regulations, vol. 43, no. 4, pp. 157–168, 2009.
[175]
P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995.
[176]
T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002.
[177]
I. Kelesidis, T. Kelesidis, and C. S. Mantzoros, “Adiponectin and cancer: a systematic review,” British Journal of Cancer, vol. 94, no. 9, pp. 1221–1225, 2006.
[178]
D. Barb, C. J. Williams, A. K. Neuwirth, and C. S. Mantzoros, “Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence,” The American Journal of Clinical Nutrition, vol. 86, no. 3, pp. s858–s866, 2007.
[179]
U. B. Pajvani, M. Hawkins, T. P. Combs et al., “Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12152–12162, 2004.
[180]
A. Koerner, J. Kratzsch, and W. Kiess, “Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come,” Best Practice and Research, vol. 19, no. 4, pp. 525–546, 2005.
[181]
O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002.
[182]
A. Coppola, R. Marfella, L. Coppola et al., “Effect of weight loss on coronary circulation and adiponectin levels in obese women,” International Journal of Cardiology, vol. 134, no. 3, pp. 414–416, 2009.
[183]
T. Yamauchi, J. Kamon, H. Waki et al., “The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity,” Nature Medicine, vol. 7, no. 8, pp. 941–946, 2001.
[184]
J. Be?towski, “Adiponectin and resistin—new hormones of white adipose tissue,” Medical Science Monitor, vol. 9, no. 2, pp. RA55–RA61, 2003.
[185]
M. Dalamaga, K. N. Diakopoulos, and C. S. Mantzoros, “The role of adiponectin in cancer: a review of current evidence,” Endocrine Reviews, vol. 33, no. 4, pp. 547–594, 2012.
[186]
V. Izadi, E. Farabad, and L. Azadbakht, “Serum adiponectin level and different kinds of cancer: a review of recent evidence,” ISRN Oncology, vol. 2012, Article ID 982769, 2012.
[187]
A. M. Kucharska-Newton, W. D. Rosamond, P. J. Mink, A. J. Alberg, E. Shahar, and A. R. Folsom, “HDL-cholesterol and incidence of breast cancer in the ARIC Cohort Study,” Annals of Epidemiology, vol. 18, no. 9, pp. 671–677, 2008.
[188]
A. S. Furberg, M. B. Veier?d, T. Wilsgaard, L. Berstein, and I. Thune, “Serum high density lipoprotein cholesterol, metabolic profile, and breast cancer risk,” Journal of the National Cancer Institute, vol. 96, no. 15, pp. 1152–1160, 2004.
[189]
A. S. Furberg, G. Jasienska, N. Bjurstam et al., “Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA study,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 1, pp. 33–40, 2005.
[190]
U. Lim, T. Gayles, H. A. Katki et al., “Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma,” Cancer Research, vol. 67, no. 11, pp. 5569–5574, 2007.
[191]
L. Magura, R. Blanchard, B. Hope, J. R. Beal, G. G. Schwartz, and A. E. Sahmoun, “Hypercholesterolemia and prostate cancer: a hospital-based case-control study,” Cancer Causes and Control, vol. 19, no. 10, pp. 1259–1266, 2008.
[192]
J. Manjer, G. Berglund, L. Bondesson et al., “Intra-urban differences in breast cancer mortality: a study from the city of Malmo in Sweden,” Journal of Epidemiology and Community Health, vol. 54, no. 4, pp. 279–285, 2000.
[193]
V. G. Kaklamani, M. Sadim, A. Hsi et al., “Variants of the adiponectin and adiponectin receptor 1 genes and breast cancer risk,” Cancer Research, vol. 68, no. 9, pp. 3178–3184, 2008.
[194]
A. Korner, K. Pazaitou-Panayiotou, T. Kelesidis, I. Kelesidis, C. J. Williams, A. Kaprara, et al., “Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1041–1048, 2007.
[195]
C. Mantzoros, E. Petridou, N. Dessypris, C. Chavelas, M. Dalamaga, D. M. Alexe, et al., “Adiponectin and breast cancer risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1102–1107, 2004.
[196]
K. Michalakis, C. J. Williams, N. Mitsiades et al., “Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: a case control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 2, pp. 308–313, 2007.
[197]
S. Otake, H. Takeda, S. Fujishima et al., “Decreased levels of plasma adiponectin associated with increased risk of colorectal cancer,” World Journal of Gastroenterology, vol. 16, no. 10, pp. 1252–1257, 2010.
[198]
B. He, Y. Pan, Y. Zhang et al., “Effects of genetic variations in the Adiponectin pathway genes on the risk of colorectal cancer in the Chinese population,” BMC Medical Genetics, vol. 12, article 94, 2011.
[199]
A. Yildirim, M. Bilici, K. ?ayir, V. Yanmaz, S. Yildirim, and S. B. Tekin, “Serum adiponectin levels in patients with esophageal cancer,” Japanese Journal of Clinical Oncology, vol. 39, no. 2, pp. 92–96, 2009.
[200]
R. Z. Stolzenberg-Solomon, S. Weinstein, M. Pollak et al., “Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers,” American Journal of Epidemiology, vol. 168, no. 9, pp. 1047–1055, 2008.
[201]
S. D. Hursting, L. M. Lashinger, K. W. Wheatley et al., “Reducing the weight of cancer: mechanistic targets for breaking the obesity-carcinogenesis link,” Best Practice & Research, vol. 22, no. 4, pp. 659–669, 2008.
[202]
R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1531–1543, 2002.
[203]
T. J. Key and V. G. Vogel, “Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women,” Breast Diseases, vol. 95, no. 16, pp. 1218–1226, 2003.
[204]
R. Kaaks, S. Rinaldi, T. J. Key et al., “Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition,” Endocrine-Related Cancer, vol. 12, no. 4, pp. 1071–1082, 2005.
[205]
C. A. Derby, S. Zilber, D. Brambilla, K. H. Morales, and J. B. McKinlay, “Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study,” Clinical Endocrinology, vol. 65, no. 1, pp. 125–131, 2006.
[206]
K. Nanda, L. A. Bastian, V. Hasselblad, and D. L. Simel, “Hormone replacement therapy and the risk of colorectal cancer: a meta- analysis,” Obstetrics and Gynecology, vol. 93, no. 5, pp. 880–888, 1999.
[207]
H. D. Nelson, L. L. Humphrey, P. Nygren, S. M. Teutsch, and J. D. Allan, “Postmenopausal hormone replacement therapy: scientific review,” Journal of the American Medical Association, vol. 288, no. 7, pp. 872–881, 2002.
[208]
M. L. Slattery, C. Sweeney, M. Murtaugh, K. N. Ma, R. K. Wolff, et al., “Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer,” Cancer Epidemiology, Biomarkers & Prevention, vol. 14, no. 12, pp. 2936–2942, 2005.
[209]
R. H. Straub, “The complex role of estrogens in inflammation,” Endocrine Reviews, vol. 28, no. 5, pp. 521–574, 2007.
[210]
X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status,” Cytokine, vol. 12, no. 5, pp. 458–465, 2000.
[211]
J. E. Morley and R. N. Baumgartner, “Cytokine-related aging process,” Journals of Gerontology Series A, vol. 59, no. 9, pp. M924–M929, 2004.
[212]
W. J. Loh, B. V. North, D. G. Johnston, and I. F. Godsland, “Insulin resistance-related biomarker clustering and subclinical inflammation as predictors of cancer mortality during 21.5 years of follow-up,” Cancer Causes and Control, vol. 21, no. 5, pp. 709–718, 2010.
[213]
B. B. Kahn and J. S. Flier, “Obesity and insulin resistance,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 473–481, 2000.
[214]
P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008.
[215]
I. M. Jazet, H. Pijl, and A. E. Meinders, “Adipose tissue as an endocrine organ: impact on insulin resistance,” Netherlands Journal of Medicine, vol. 61, no. 6, pp. 194–212, 2003.
[216]
S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006.
[217]
S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006.
[218]
M. Gautam, T. M. DeChiara, D. J. Glass, G. D. Yancopoulos, and J. R. Sanes, “Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn,” Developmental Brain Research, vol. 114, no. 2, pp. 171–178, 1999.
[219]
M. Pollak, “Insulin, insulin-like growth factors and neoplasia,” Best Practice and Research, vol. 22, no. 4, pp. 625–638, 2008.
[220]
J. Dupont and D. Le Roith, “Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects,” Journal of Clinical Pathology, vol. 54, no. 3, pp. 149–154, 2001.
[221]
A. A. Samani, S. Yakar, D. LeRoith, and P. Brodt, “The role of the IGF system in cancer growth and metastasis: overview and recent insights,” Endocrine Reviews, vol. 28, no. 1, pp. 20–47, 2007.
[222]
R. Kooijman, “Regulation of apoptosis by insulin-like growth factor (IGF)-I,” Cytokine and Growth Factor Reviews, vol. 17, no. 4, pp. 305–323, 2006.
[223]
J. Frystyk, “Free insulin-like growth factors—measurements and relationships to growth hormone secretion and glucose homeostasis,” Growth Hormone and IGF Research, vol. 14, no. 5, pp. 337–375, 2004.
[224]
S. D. Hursting, S. M. Smith, L. M. Lashinger, A. E. Harvey, and S. N. Perkins, “Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research,” Carcinogenesis, vol. 31, no. 1, Article ID bgp280, pp. 83–89, 2009.
[225]
A. G. Renehan, J. Frystyk, and A. Flyvbjerg, “Obesity and cancer risk: the role of the insulin-IGF axis,” Trends in Endocrinology and Metabolism, vol. 17, no. 8, pp. 328–336, 2006.
[226]
R. Huxley, A. Ansary-Moghaddam, A. Berrington De González, F. Barzi, and M. Woodward, “Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies,” British Journal of Cancer, vol. 92, no. 11, pp. 2076–2083, 2005.
[227]
P. Lindblad, W. H. Chow, J. Chan et al., “The role of diabetes mellitus in the aetiology of renal cell cancer,” Diabetologia, vol. 42, no. 1, pp. 107–112, 1999.
[228]
E. Friberg, C. S. Mantzoros, and A. Wolk, “Diabetes and risk of endometrial cancer: a population-based prospective cohort study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 2, pp. 276–280, 2007.
[229]
R. Kaaks, “Nutrition, hormones, and breast cancer: is insulin the missing link?” Cancer Causes and Control, vol. 7, no. 6, pp. 605–625, 1996.
[230]
A. G. Renehan, D. L. Roberts, and C. Dive, “Obesity and cancer: pathophysiological and biological mechanisms,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 71–83, 2008.
[231]
A. Wolk, C. S. Mantzoros, S. O. Andersson et al., “Insulin-like growth factor 1 and prostate cancer risk: a population- based, case-control study,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 911–915, 1998.
[232]
C. W. M. Cutting, C. Hunt, J. A. Nisbet, J. M. Bland, A. G. Dalgleish, and R. S. Kirby, “Serum insulin-like growth factor-1 is not a useful marker of prostate cancer,” BJU International, vol. 83, no. 9, pp. 996–999, 1999.
[233]
S. E. Hankinson, W. C. Willett, G. A. Colditz et al., “Circulating concentrations of insulin-like growth factor-I and risk of breast cancer,” The Lancet, vol. 351, no. 9113, pp. 1393–1396, 1998.
[234]
N. K. Saxena, L. Taliaferro-Smith, B. B. Knight et al., “Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor,” Cancer Research, vol. 68, no. 23, pp. 9712–9722, 2008.
[235]
J. Nakae, Y. Kido, and D. Accili, “Distinct and overlapping functions of insulin and IGF-I receptors,” Endocrine Reviews, vol. 22, no. 6, pp. 818–835, 2001.
[236]
E. J. Gallagher and D. LeRoith, “The proliferating role of insulin and insulin-like growth factors in cancer,” Trends in Endocrinology and Metabolism, vol. 21, no. 10, pp. 610–618, 2010.
[237]
L. W. Ellisen, “Growth control under stress: mTOR regulation through the REDD1-TSC pathway,” Cell Cycle, vol. 4, no. 11, pp. 1500–1502, 2005.
[238]
J. Brugarolas, K. Lei, R. L. Hurley et al., “Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex,” Genes and Development, vol. 18, no. 23, pp. 2893–2904, 2004.
[239]
C. M. Perks, E. G. Vernon, A. H. Rosendahl, D. Tonge, and J. M. Holly, “IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells,” Oncogene, vol. 26, no. 40, pp. 5966–5972, 2007.
[240]
A. V. Lee, J. G. Jackson, J. L. Gooch et al., “Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo,” Molecular Endocrinology, vol. 13, no. 5, pp. 787–796, 1999.
[241]
M. Gallí, F. Van Gool, and O. Leo, “Sirtuins and inflammation: friends or foes?” Biochemical Pharmacology, vol. 81, no. 5, pp. 569–576, 2011.
[242]
H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004.
[243]
L. Qiang, H. Wang, and S. R. Farmer, “Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 4698–4707, 2007.
[244]
L. Qiao and J. Shao, “SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein α transcriptional complex,” Journal of Biological Chemistry, vol. 281, no. 52, pp. 39915–39924, 2006.
[245]
L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007.
[246]
K. M. Ramsey, K. F. Mills, A. Satoh, and S. I. Imai, “Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice,” Aging Cell, vol. 7, no. 1, pp. 78–88, 2008.
[247]
S. Nemoto, M. M. Fergusson, and T. Finkel, “SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 16456–16460, 2005.
[248]
E. Nisoli, C. Tonello, A. Cardile et al., “Cell biology: calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS,” Science, vol. 310, no. 5746, pp. 314–317, 2005.
[249]
C. S. Lim, “SIRT1: tumor promoter or tumor suppressor?” Medical Hypotheses, vol. 67, no. 2, pp. 341–344, 2006.
[250]
J. Ford, M. Jiang, and J. Milner, “Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival,” Cancer Research, vol. 65, no. 22, pp. 10457–10463, 2005.
[251]
J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006.
[252]
D. McGuinness, D. H. McGuinness, J. A. McCaul, P. G. Shiels, et al., “Sirtuins, bioageing, and cancer,” Journal of Aging Research, vol. 2011, Article ID 235754, 11 pages, 2011.
[253]
P. Trayhurn, B. Wang, and I. S. Wood, “Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?” British Journal of Nutrition, vol. 100, no. 2, pp. 227–235, 2008.
[254]
G. L. Semenza, “Targeting HIF-1 for cancer therapy,” Nature Reviews Cancer, vol. 3, no. 10, pp. 721–732, 2003.
[255]
P. Vaupel and M. Hoeckel, “Predictive power of the tumor oxygenation status,” Advances in Experimental Medicine and Biology, vol. 471, pp. 533–539, 2000.
[256]
H. K. Eltzschig and P. Carmeliet, “Hypoxia and inflammation,” The New England Journal of Medicine, vol. 364, no. 7, pp. 656–665, 2011.
[257]
R. Cancello, C. Henegar, N. Viguerie et al., “Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss,” Diabetes, vol. 54, no. 8, pp. 2277–2286, 2005.
[258]
Y. Higami, J. L. Barger, G. P. Page et al., “Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue,” Journal of Nutrition, vol. 136, no. 2, pp. 343–352, 2006.
[259]
M. Hofker and C. Wijmenga, “A supersized list of obesity genes,” Nature Genetics, vol. 41, no. 2, pp. 139–140, 2009.
[260]
P. D. P. Pharoah, A. C. Antoniou, D. F. Easton, and B. A. J. Ponder, “Polygenes, risk prediction, and targeted prevention of breast cancer,” The New England Journal of Medicine, vol. 358, no. 26, pp. 2796–2803, 2008.
[261]
S. Ahmed, G. Thomas, M. Ghoussaini, C. S. Healey, M. K. Humphreys, R. Platte, et al., “Newly discovered breast cancer susceptibility loci on 3p24 and 17q23,” Nature Genetics, vol. 41, no. 5, pp. 585–590, 2009.
[262]
A. Tenesa and M. G. Dunlop, “New insights into the aetiology of colorectal cancer from genome-wide association studies,” Nature Reviews Genetics, vol. 10, no. 6, pp. 353–358, 2009.
[263]
A. Tenesa, H. Campbell, E. Theodoratou et al., “Common genetic variants at the MC4R locus are associated with obesity, but not with dietary energy intake or colorectal cancer in the Scottish population,” International Journal of Obesity, vol. 33, no. 2, pp. 284–288, 2009.
[264]
M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, “Identification of white adipocyte progenitor cells in vivo,” Cell, vol. 135, no. 2, pp. 240–249, 2008.
[265]
A. H. Klopp, Y. Zhang, T. Solley, F. Amaya-Manzanares, F. Marini, M. Andreeff, et al., “Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors,” Clinical Cancer Research, vol. 18, no. 3, pp. 771–782, 2012.
[266]
Y. Zhang, A. C. Daquinag, F. Amaya-Manzanares, O. Sirin, C. Tseng, and M. G. Kolonin, “Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment,” Cancer Research, vol. 72, no. 20, pp. 5198–5208, 2012.
[267]
S. Schenk, M. Saberi, and J. M. Olefsky, “Insulin sensitivity: modulation by nutrients and inflammation,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 2992–3002, 2008.
[268]
C. de Luca and J. M. Olefsky, “Inflammation and insulin resistance,” FEBS Letters, vol. 582, no. 1, pp. 97–105, 2008.
[269]
S. E. Kahn, B. Zinman, S. M. Haffner et al., “Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes,” Diabetes, vol. 55, no. 8, pp. 2357–2364, 2006.
[270]
G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993.
[271]
C. S. Kim, H. S. Park, T. Kawada et al., “Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters,” International Journal of Obesity, vol. 30, no. 9, pp. 1347–1355, 2006.
[272]
N. B. Ruderman, S. H. Schneider, and P. Berchtold, “The “metabolically-obese,” normal-weight individual,” American Journal of Clinical Nutrition, vol. 34, no. 8, pp. 1617–1621, 1981.
[273]
R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008.
[274]
E. Succurro, M. A. Marini, S. Frontoni et al., “Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals,” Obesity, vol. 16, no. 8, pp. 1881–1886, 2008.
[275]
F. Wang, H. Liu, W. P. Blanton, A. Belkina, N. K. Lebrasseur, and G. V. Denis, “Brd2 disruption in mice causes severe obesity without Type 2 diabetes,” Biochemical Journal, vol. 425, no. 1, pp. 71–83, 2010.
[276]
A. C. Belkina and G. V. Denis, “Obesity genes and insulin resistance,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 472–477, 2010.
[277]
G. Sethi, M. K. Shanmugam, L. Ramachandran, A. P. Kumar, and V. Tergaonkar, “Multifaceted link between cancer and inflammation,” Bioscience Reports, vol. 32, no. 1, pp. 1–15, 2012.
[278]
M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” Journal of the American Medical Association, vol. 282, no. 22, pp. 2131–2135, 1999.
[279]
D. C. W. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005.
[280]
A. Festa, R. D'Agostino, R. P. Tracy, and S. M. Haffner, “Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study,” Diabetes, vol. 51, no. 4, pp. 1131–1137, 2002.
[281]
D. J. Freeman, J. Norrie, M. J. Caslake et al., “C-reactive protein is an independent predictor of risk for the development of diabetes in the west of Scotland coronary prevention study,” Diabetes, vol. 51, no. 5, pp. 1596–1600, 2002.
[282]
T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” Journal of the American Medical Association, vol. 291, no. 5, pp. 585–590, 2004.
[283]
E. Volkova, J. A. Willis, J. E. Wells, B. A. Robinson, G. U. Dachs, and M. J. Currie, “Association of angiopoietin-2, C-reactive protein and markers of obesity and insulin resistance with survival outcome in colorectal cancer,” British Journal of Cancer, vol. 104, no. 1, pp. 51–59, 2011.
[284]
J. H. Kim, R. A. Bachmann, and J. Chen, “Interleukin-6 and insulin resistance,” Vitamins & Hormones, vol. 80, pp. 613–633, 2009.
[285]
H. S. Park, J. Y. Park, and R. Yu, “Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6,” Diabetes Research and Clinical Practice, vol. 69, no. 1, pp. 29–35, 2005.
[286]
V. Syed, G. Ulinski, S. C. Mok, and S. M. Ho, “Reproductive hormone-induced, STAT3-mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells,” Journal of the National Cancer Institute, vol. 94, no. 8, pp. 617–629, 2002.
[287]
V. Sriuranpong, J. I. Park, P. Amornphimoltham, V. Patel, B. D. Nelkin, and J. S. Gutkind, “Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system,” Cancer Research, vol. 63, no. 11, pp. 2948–2956, 2003.
[288]
D. Giri, M. Ozen, and M. Ittmann, “Interleukin-6 is an autocrine growth factor in human prostate cancer,” American Journal of Pathology, vol. 159, no. 6, pp. 2159–2165, 2001.
[289]
Y. Y. Li, L. L. Hsieh, R. P. Tang, S. K. Liao, and K. Y. Yeh, “Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line,” Human Immunology, vol. 70, no. 3, pp. 151–158, 2009.
[290]
T. Yokoe, Y. Iino, H. Takei et al., “Changes of cytokines and thyroid function in patients with recurrent breast cancer,” Anticancer Research, vol. 17, no. 1 B, pp. 695–699, 1997.
[291]
J. S. Goydos, A. M. Brumfield, E. Frezza, A. Booth, M. T. Lotze, and S. E. Carty, “Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker,” Annals of Surgery, vol. 227, no. 3, pp. 398–404, 1998.
[292]
H. A. Preti, F. Cabanillas, M. Talpaz, S. L. Tucker, J. F. Seymour, and R. Kurzrock, “Prognostic value of serum interleukin-6 in diffuse large-cell lymphona,” Annals of Internal Medicine, vol. 127, no. 3, pp. 186–194, 1997.
[293]
A. Dowlati, N. Levitan, and S. C. Remick, “Evaluation of interleukin-6 in bronchoalveolar lavage fluid and serum of patients with lung cancer,” Journal of Laboratory and Clinical Medicine, vol. 134, no. 4, pp. 405–409, 1999.
[294]
R. Mouawad, A. Benhammouda, O. Rixe et al., “Endogenous interleukin 6 levels in patients with metastatic malignant melanoma: correlation with tumor burden,” Clinical Cancer Research, vol. 2, no. 8, pp. 1405–1409, 1996.
[295]
A. Wierzbowska, H. Urbanska-Rys, and T. Robak, “Circulating IL-6-type cytokines and sIL-6R in patients with multiple myeloma,” British Journal of Haematology, vol. 105, no. 2, pp. 412–419, 1999.
[296]
S. Okada, T. Okusaka, H. Ishii, A. Kyogoku, M. Yoshimori, N. Kajimura, et al., “Elevated serum interleukin-6 levels in patients with pancreatic cancer,” Japanese Journal of Clinical Oncology, vol. 28, no. 1, pp. 12–15, 1998.
[297]
J. Nakashima, M. Tachibana, Y. Horiguchi et al., “Serum interleukin 6 as a prognostic factor in patients with prostate cancer,” Clinical Cancer Research, vol. 6, no. 7, pp. 2702–2706, 2000.
[298]
J. Y. Blay, J. F. Rossi, J. Wijdenes, C. Menetrier-Caux, S. Schemann, S. Négrier, et al., “Role of interleukin-6 in the paraneoplastic inflammatory syndrome associated with renal-cell carcinoma,” International Journal of Cancer, vol. 72, no. 3, pp. 424–430, 1997.
[299]
E. J. Park, J. H. Lee, G. Y. Yu et al., “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2, pp. 197–208, 2010.
[300]
G. He, G. Y. Yu, V. Temkin, H. Ogata, C. Kuntzen, T. Sakurai, et al., “Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation,” Cancer Cell, vol. 17, no. 3, pp. 286–297, 2010.
[301]
B. Sun and M. Karin, “Obesity, inflammation, and liver cancer,” Journal of Hepatology, vol. 56, no. 3, pp. 704–713, 2012.
[302]
T. H. Kim, S. E. Choi, E. S. Ha et al., “IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin resistance in human skeletal muscle,” Acta Diabetologica, vol. 50, no. 2, pp. 189–200, 2013.
[303]
J. J. Senn, P. J. Klover, I. A. Nowak, and R. A. Mooney, “Interleukin-6 induces cellular insulin resistance in hepatocytes,” Diabetes, vol. 51, no. 12, pp. 3391–3399, 2002.
[304]
M. B. Olszewski, A. J. Groot, J. Dastych, and E. F. Knol, “TNF trafficking to human mast cell granules: mature chain-dependent endocytosis,” Journal of Immunology, vol. 178, no. 9, pp. 5701–5709, 2007.
[305]
L. C. Gahring, N. G. Carlson, R. A. Kulmer, and S. W. Rogers, “Neuronal expression of tumor necrosis factor alpha in the murine brain,” NeuroImmunoModulation, vol. 3, no. 5, pp. 289–303, 1997.
[306]
H. Wajant, K. Pfizenmaier, and P. Scheurich, “Tumor necrosis factor signaling,” Cell Death and Differentiation, vol. 10, no. 1, pp. 45–65, 2003.
[307]
T. Tzanavari, P. Giannogonas, and K. P. Karalis, “TNF-α and obesity,” Current Directions in Autoimmunity, vol. 11, pp. 145–156, 2010.
[308]
D. F. Jelinek and P. E. Lipsky, “Enhancement of human B cell proliferation and differentiation by tumor necrosis factor-α and interleukin 11,” Journal of Immunology, vol. 139, no. 9, pp. 2970–2976, 1987.
[309]
T. Tao, Y. Ji, C. Cheng et al., “Tumor necrosis factor-alpha inhibits Schwann cell proliferation by up-regulating Src-suppressed protein kinase C substrate expression,” Journal of Neurochemistry, vol. 111, no. 3, pp. 647–655, 2009.
[310]
B. Zinman, A. J. G. Hanley, S. B. Harris, J. Kwan, and I. G. Fantus, “Circulating tumor necrosis factor-α concentrations in a native canadian population with high rates of type 2 diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 272–278, 1999.
[311]
K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997.
[312]
X. Wang and Y. Lin, “Tumor necrosis factor and cancer, buddies or foes?” Acta Pharmacologica Sinica, vol. 29, no. 11, pp. 1275–1288, 2008.
[313]
M. Pera, C. Manterola, O. Vidal, and L. Grande, “Epidemiology of esophageal adenocarcinoma,” Journal of Surgical Oncology, vol. 92, no. 3, pp. 151–159, 2005.
[314]
G. K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, and D. Bull, “Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study,” British Medical Journal, vol. 335, no. 7630, pp. 1134–1139, 2007.
[315]
A. Kubo and D. A. Corley, “Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 5, pp. 872–878, 2006.
[316]
N. Pandeya, A. C. Green, and D. C. Whiteman, “Australian Cancer Study Prevalence and determinants of frequent gastroesophageal reflux symptoms in the Australian community,” Diseases of the Esophagus, vol. 25, no. 7, pp. 573–583, 2012.
[317]
R. K. Wood and Y. X. Yang, “Barrett's esophagus in 2008: an update,” Keio Journal of Medicine, vol. 57, no. 3, pp. 132–138, 2008.
[318]
A. M. Ryan, M. Duong, L. Healy et al., “Obesity, metabolic syndrome and esophageal adenocarcinoma: epidemiology, etiology and new targets,” Cancer Epidemiology, vol. 35, no. 4, pp. 309–319, 2011.
[319]
S. Nair, S. Verma, and P. J. Thuluvath, “Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States,” Hepatology, vol. 35, no. 1, pp. 105–109, 2002.
[320]
J. M. Regimbeau, M. Columbat, P. Mognol et al., “Obesity and diabetes as a risk factor for hepatocellular carcinoma,” Liver Transplantation, vol. 10, no. 2, pp. S69–S73, 2004.
[321]
W. H. Chow, G. Gridley, J. F. Fraumeni, and B. J?rvholm, “Obesity, hypertension, and the risk of kidney cancer in men,” The New England Journal of Medicine, vol. 343, no. 18, pp. 1305–1311, 2000.
[322]
T. Pischon, P. H. Lahmann, H. Boeing et al., et al., “Body size and risk of colon and rectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC),” Journal of the National Cancer Institute, vol. 98, no. 13, pp. 920–931, 2006.
[323]
M. Jenab, E. Riboli, R. J. Cleveland et al., “Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition,” International Journal of Cancer, vol. 121, no. 2, pp. 368–376, 2007.
[324]
M. S. Sandhu, D. B. Dunger, and E. L. Giovannucci, “Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer,” Journal of the National Cancer Institute, vol. 94, no. 13, pp. 972–980, 2002.
[325]
J. Ma, M. N. Pollak, E. Giovannucci et al., “Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3,” Journal of the National Cancer Institute, vol. 91, no. 7, pp. 620–625, 1999.
[326]
A. G. Renehan, M. Zwahlen, C. Minder, S. T. O'Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” The Lancet, vol. 363, no. 9418, pp. 1346–1353, 2004.
[327]
S. A. Aaronson, “Growth factors and cancer,” Science, vol. 254, no. 5035, pp. 1146–1153, 1991.
[328]
R. Kaaks and A. Lukanova, “Energy balance and cancer: the role of insulin and insulin-like growth factor-I,” Proceedings of the Nutrition Society, vol. 60, no. 1, pp. 91–106, 2001.
[329]
P. Stattin, A. Lukanova, C. Biessy et al., “Obesity and colon cancer: does leptin provide a link?” International Journal of Cancer, vol. 109, no. 1, pp. 149–152, 2004.
[330]
P. Stattin, R. Palmqvist, S. S?derberg et al., “Plasma leptin and colorectal cancer risk: a prospective study in Northern Sweden,” Oncology Reports, vol. 10, no. 6, pp. 2015–2021, 2003.
[331]
C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006.
[332]
E. K. Wei, E. Giovannucci, C. S. Fuchs, W. C. Willett, and C. S. Mantzoros, “Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1688–1694, 2005.
[333]
A. Lukanova, S. S?derberg, R. Kaaks, E. Jellum, and P. Stattin, “Serum adiponectin is not associated with risk of colorectal cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 2, pp. 401–402, 2006.
[334]
D. C. McMillan, K. Canna, and C. S. McArdle, “Systemic inflammatory response predicts survival following curative resection of colorectal cancer,” British Journal of Surgery, vol. 90, no. 2, pp. 215–219, 2003.
[335]
C. Miki, N. Konishi, E. Ojima, T. Hatada, Y. Inoue, and M. Kusunoki, “C-reactive protein as a prognostic variable that reflects uncontrolled up-regulation of the IL-1-IL-6 network system in colorectal carcinoma,” Digestive Diseases and Sciences, vol. 49, no. 6, pp. 970–976, 2004.
[336]
J. E. M. Crozier, R. F. McKee, C. S. McArdle et al., “The presence of a systemic inflammatory response predicts poorer survival in patients receiving adjuvant 5-FU chemotherapy following potentially curative resection for colorectal cancer,” British Journal of Cancer, vol. 94, no. 12, pp. 1833–1836, 2006.
[337]
M. Ishizuka, H. Nagata, K. Takagi, T. Horie, and K. Kubota, “Inflammation-based prognostic score is a novel predictor of postoperative outcome in patients with colorectal cancer,” Annals of Surgery, vol. 246, no. 6, pp. 1047–1051, 2007.
[338]
J. E. M. Crozier and D. C. McMillan, “Authors' reply: Preoperative but not postoperative systemic inflammatory response correlates with survival in colorectal cancer,” British Journal of Surgery, vol. 94, no. 11, pp. 1439–1440, 2007.
[339]
M. Ishizuka, J. Kita, M. Shimoda et al., “Systemic inflammatory response predicts postoperative outcome in patients with liver metastases from colorectal cancer,” Journal of Surgical Oncology, vol. 100, no. 1, pp. 38–42, 2009.
[340]
E. M. Siegel, C. M. Ulrich, E. M. Poole, R. S. Holmes, P. B. Jacobsen, and D. Shibata, “The effects of obesity and obesity-related conditions on colorectal cancer prognosis,” Cancer Control, vol. 17, no. 1, pp. 52–57, 2010.
[341]
L. M. Forrest, D. C. McMillan, C. S. McArdle, W. J. Angerson, and D. J. Dunlop, “Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer,” British Journal of Cancer, vol. 89, no. 6, pp. 1028–1030, 2003.
[342]
A. M. Al Murri, J. M. S. Bartlett, P. A. Canney, J. C. Doughty, C. Wilson, and D. C. McMillan, “Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer,” British Journal of Cancer, vol. 94, no. 2, pp. 227–230, 2006.
[343]
A. B. C. Crumley, D. C. McMillan, M. McKernan, A. C. McDonald, and R. C. Stuart, “Evaluation of an inflammation-based prognostic score in patients with inoperable gastro-oesophageal cancer,” British Journal of Cancer, vol. 94, no. 5, pp. 637–641, 2006.
[344]
D. C. McMillan, J. E. M. Crozier, K. Canna, W. J. Angerson, and C. S. McArdle, “Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer,” International Journal of Colorectal Disease, vol. 22, no. 8, pp. 881–886, 2007.
[345]
E. F. Leitch, M. Chakrabarti, J. E. M. Crozier et al., “Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer,” British Journal of Cancer, vol. 97, no. 9, pp. 1266–1270, 2007.
[346]
A. T. Chan, S. Ogino, and C. S. Fuchs, “Aspirin use and survival after diagnosis of colorectal cancer,” Journal of the American Medical Association, vol. 302, no. 6, pp. 649–658, 2009.
[347]
F. Osorio-Costa, G. Z. Rocha, M. M. Dias, and J. B. Carvalheira, “Epidemiological and molecular mechanisms aspects linking obesity and cancer,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 53, no. 2, pp. 213–226, 2009.
[348]
R. C. Travis and T. J. Key, “Oestrogen exposure and breast cancer risk,” Breast Cancer Research, vol. 5, no. 5, pp. 239–247, 2003.
[349]
C. Schairer, D. Hill, S. R. Sturgeon et al., “Serum concentrations of IGF-I, IGFBP-3 and c-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women,” International Journal of Cancer, vol. 108, no. 5, pp. 773–779, 2004.
[350]
P. Toniolo, P. F. Bruning, A. Akhmedkhanov, J. M. Bonfrer, K. L. Koenig, A. Lukanova, et al., “Serum insulin-like growth factor-I and breast cancer,” International Journal of Cancer, vol. 88, no. 5, pp. 828–832, 2000.
[351]
R. Kaaks, P. Toniolo, A. Akhmedkhanov et al., “Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women,” Journal of the National Cancer Institute, vol. 92, no. 19, pp. 1592–1600, 2000.
[352]
G. Yang, G. Lu, F. Jin et al., “Population-based, case-control study of blood C-peptide level and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 11, pp. 1207–1211, 2001.
[353]
P. J. Goodwin, M. Ennis, K. I. Pritchard et al., “Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes,” Breast Cancer Research and Treatment, vol. 74, no. 1, pp. 65–76, 2002.
[354]
L. Tessitore, B. Vizio, D. Pesola et al., “Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients,” International Journal of Oncology, vol. 24, no. 6, pp. 1529–1535, 2004.
[355]
A. Maccio and C. Madeddu, “Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications,” Scientific World Journal, vol. 11, pp. 2020–2036, 2011.
[356]
N. Yin, D. Wang, H. Zhang et al., “Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin,” Cancer Research, vol. 64, no. 16, pp. 5870–5875, 2004.
[357]
W. Metzler, S. Fischer, C. K?hler, F. Pistrosch, B. Kindel, and M. Hanefeld, “Insulin resistance and metabolic parameters in type 2 diabetic patients,” European Journal of Internal Medicine, vol. 13, no. 2, pp. 108–114, 2002.
[358]
Y. Matsuzawa, “Adiponectin: identification, physiology and clinical relevance in metabolic and vascular disease,” Atherosclerosis Supplements, vol. 6, no. 2, pp. 7–14, 2005.
[359]
A. Sch?ffler, H. Herfarth, G. Paul et al., “Identification of influencing variables on adiponectin serum levels in diabetes mellitus type 1 and type 2,” Experimental and Clinical Endocrinology and Diabetes, vol. 112, no. 7, pp. 383–389, 2004.
[360]
E. Brakenhielm, N. Veitonm?ki, R. Cao, S. Kihara, Y. Matsuzawa, et al., “Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2476–2481, 2004.
[361]
M. Pignatelli, C. Cocca, A. Santos, and A. Perez-Castillo, “Enhancement of BRCA1 gene expression by the peroxisome proliferator-activated receptor γ in the MCF-7 breast cancer cell line,” Oncogene, vol. 22, no. 35, pp. 5446–5450, 2003.
[362]
A. Purohit, S. P. Newman, and M. J. Reed, “The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer,” Breast Cancer Research, vol. 4, no. 2, pp. 65–69, 2002.
[363]
M. L. Slattery, K. Curtin, C. Sweeney et al., “Modifying effects of IL-6 polymorphisms on body size-associated breast cancer risk,” Obesity, vol. 16, no. 2, pp. 339–347, 2008.
[364]
B. Dirat, L. Bochet, M. Dabek et al., “Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion,” Cancer Research, vol. 71, no. 7, pp. 2455–2465, 2011.
[365]
B. L. Pierce, R. Ballard-Barbash, L. Bernstein et al., “Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients,” Journal of Clinical Oncology, vol. 27, no. 21, pp. 3437–3444, 2009.
[366]
A. Lukanova, E. Lundin, A. Micheli et al., “Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women,” International Journal of Cancer, vol. 108, no. 3, pp. 425–432, 2004.
[367]
A. S. Greenberg and M. L. McDaniel, “Identifying the links between obesity, insulin resistance and β-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes,” European Journal of Clinical Investigation, vol. 32, no. 3, pp. 24–34, 2002.
[368]
V. Chopra, T. V. Dinh, and E. V. Hannigan, “Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer,” Journal of Cancer Research and Clinical Oncology, vol. 123, no. 3, pp. 167–172, 1997.
[369]
R. Punnonen, K. Teisala, T. Kuoppala, B. Bennett, and J. Punnonen, “Cytokine production profiles in the peritoneal fluids of patients with malignant or benign gynecologic tumors,” Cancer, vol. 83, no. 4, pp. 788–796, 1998.
[370]
S. Bellone, K. Watts, S. Cane' et al., “High serum levels of interleukin-6 in endometrial carcinoma are associated with uterine serous papillary histology, a highly aggressive and chemotherapy-resistant variant of endometrial cancer,” Gynecologic Oncology, vol. 98, no. 1, pp. 92–98, 2005.
[371]
M. Slater, M. Cooper, and C. R. Murphy, “Human growth hormone and interleukin-6 are upregulated in endometriosis and endometrioid adenocarcinoma,” Acta Histochemica, vol. 108, no. 1, pp. 13–18, 2006.
[372]
L. Dossus, S. Rinaldi, S. Becker et al., “Obesity, inflammatory markers, and endometrial cancer risk: a prospective Case—Control Study,” Endocrine-Related Cancer, vol. 17, no. 4, pp. 1007–1019, 2010.
[373]
T. E. Vaskivuo, F. Stenb?ck, and J. S. Tapanainen, “Apoptosis and apoptosis-related factors Bcl-2, Bax, tumor necrosis factor-α, and NF-κB in human endometrial hyperplasia and carcinoma,” Cancer, vol. 95, no. 7, pp. 1463–1471, 2002.
[374]
J. Pallares, J. L. Martínez-Guitarte, X. Dolcet et al., “Abnormalities in the NF-κB family and related proteins in endometrial carcinoma,” Journal of Pathology, vol. 204, no. 5, pp. 569–577, 2004.
[375]
A. Purohit and M. J. Reed, “Regulation of estrogen synthesis in postmenopausal women,” Steroids, vol. 67, no. 12, pp. 979–983, 2002.