Despite the fact that CNB has been progressively replaced by FNAC in the investigation of nonpalpable lesions or microcalcifications without a clinical or radiological mass lesion, FNAC has yet a role in palpable lesions provided it is associated with the triple diagnosis and experienced cytologist. In these conditions, FNAC is a safe, effective, economical, and accurate technique for breast cancer evaluation. Numerous literature reviews and meta-analyses illustrated the advantages and disadvantages of both methods CNB and FNAC. The difference does not seem significant when noninformative and unsatisfactory FNAC was excluded. Recently, cytological methods using liquid-based cytology (LBC) technology improve immunocytological and molecular tests with the same efficiency as classical immunohistochemistry. The indications of FNAC were, for palpable lesions, relative contraindication of CNB (elderly or frailty), staging of multiple nodules in conjunction or not with CNB, staging of lymph node status, newly appearing lesion in patient under neoadjuvant treatment, decreasing of anxiety with a rapid diagnosis, evaluation of biomarkers and new biomarkers, and chronological evaluation of biomarker following the neoadjuvant therapy response. 1. Introduction Neoadjuvant chemotherapy actually takes an important place in treatment of operable breast cancer in the hope of improving conservative surgery rate of female patients. Neoadjuvant chemotherapy includes today on target therapies involving the research on expression of specific molecules by tumoral cells. In routine practice, estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) are the common used biomarkers. New pharmaceutical molecules, other than ER/PR or HER2, are now already evaluated in clinical research as new biomarkers and new target for neoadjuvant therapy [1]. Fine-needle aspiration cytology (FNAC) of the breast is wellknown as a safe, effective, economical, and accurate technique for diagnosing palpable breast lesion [2–4]. This last decade, FNAC technique is improved by the development of new cytological methods allowing standardization of fixation and assuring constant results with ancillary tests such as immunocytochemistry and in situ molecular biology. Also, one of the advantages of FNAC is the management of small tissue fragments permitting a repetitive evaluation of the chronological evolution in expression of tumoral biomarkers. 2. What Are the Advantages of FNAC in Comparison with Core-Needle Biopsy (CNB)? Previously, the role of FNAC has
References
[1]
C. Denkert, B. V. Sinn, Y. Issa et al., “Prediction of response to neoadjuvant chemotherapy: new biomarker approaches and concepts,” Breast Care, vol. 6, no. 4, pp. 265–272, 2011.
[2]
M. Rosa, “Fine-needle aspiration biopsy: a historical overview,” Diagnostic Cytopathology, vol. 36, no. 11, pp. 773–775, 2008.
[3]
F. Feoli, M. Paesmans, and P. Van Eeckhout, “Fine needle aspiration cytology of the breast: impact of experience on accuracy, using standardized cytologic criteria,” Acta Cytologica, vol. 52, no. 2, pp. 145–151, 2008.
[4]
R. K. Gupta, S. Naran, A. Buchanan, R. Fauck, and J. Simpson, “Fine-needle aspiration cytology of breast: its impact on surgical practice with an emphasis on the diagnosis of breast abnormalities in young women,” Diagnostic Cytopathology, vol. 4, no. 3, pp. 206–209, 1988.
[5]
L. E. M. Duijm, J. H. Groenewoud, R. M. H. Roumen, H. J. De Koning, M. L. Plaisier, and J. Fracheboud, “A decade of breast cancer screening in the Netherlands: trends in the preoperative diagnosis of breast cancer,” Breast Cancer Research and Treatment, vol. 106, no. 1, pp. 113–119, 2007.
[6]
M. Bilous, “Breast core needle biopsy: issues and controversies,” Modern Pathology, vol. 23, no. 2, supplement, pp. S36–S45, 2010.
[7]
W. Bruening, J. Fontanarosa, K. Tipton, J. R. Treadwell, J. Launders, and K. Schoelles, “Systematic review: comparative effectiveness of core-needle and open surgical biopsy to diagnose breast lesions,” Annals of Internal Medicine, vol. 152, no. 4, pp. 238–246, 2010.
[8]
J. F. Nasuti, P. K. Gupta, and Z. W. Baloch, “Diagnostic value and cost-effectiveness of on-site evaluation of fine-needle aspiration specimens: review of 5,688 cases,” Diagnostic Cytopathology, vol. 27, no. 1, pp. 1–4, 2002.
[9]
P.-L. Liew, T.-J. Liu, M.-C. Hsieh et al., “Rapid staining and immediate interpretation of fine-needle aspiration cytology for palpable breast lesions: diagnostic accuracy, mammographic, ultrasonographic and histopathologic correlations,” Acta Cytologica, vol. 55, no. 1, pp. 30–37, 2010.
[10]
M. H. Bukhari, M. Arshad, S. Jamal et al., “Use of fine-needle aspiration in evaluation of breast lumps,” Pathology Research International, vol. 2011, Article ID 689521, 10 pages, 2011.
[11]
M. Rosa, A. Mohammadi, and S. Masood, “The value of fine needle aspiration biopsy in the diagnosis and prognostic assessment of palpable breast lesions,” Diagnostic Cytopathology, vol. 40, no. 1, pp. 26–34, 2012.
[12]
Y.-H. Yu, W. Wei, and J.-L. Liu, “Diagnostic value of fine-needle aspiration biopsy for breast mass: a systematic review and meta-analysis,” BMC Cancer, vol. 12, article 41, 2012.
[13]
R. J. Jackman, F. A. Marzoni Jr., and J. Rosenberg, “False-negative diagnoses at stereotactic vacuum-assisted needle breast biopsy: long-term follow-up of 1,280 lesions and review of the literature,” American Journal of Roentgenology, vol. 192, no. 2, pp. 341–351, 2009.
[14]
S. Masood, “Expanded role of cytopathology in breast cancer diagnosis, therapy and research: the impact of fine needle aspiration biopsy and imprint cytology,” Breast Journal, vol. 18, no. 1, pp. 1–2, 2012.
[15]
B. Kooistra, C. Wauters, and L. Strobbe, “Indeterminate breast fine-needle aspiration: repeat aspiration or core needle biopsy?” Annals of Surgical Oncology, vol. 16, no. 2, pp. 281–284, 2009.
[16]
S. M. Willems, C. H. M. Van Deurzen, and P. J. Van Diest, “Diagnosis of breast lesions: fine-needle aspiration cytology or core needle biopsy? A review,” Journal of Clinical Pathology, vol. 65, no. 4, pp. 287–292, 2012.
[17]
R. Yamaguchi, S.-I. Tsuchiya, T. Koshikawa et al., “Comparison of the accuracy of breast cytological diagnosis at seven institutions in Southern Fukuoka Prefecture, Japan,” Japanese Journal of Clinical Oncology, vol. 42, no. 1, pp. 21–28, 2012.
[18]
S. Veneti, D. Daskalopoulou, S. Zervoudis, E. Papasotiriou, and L. Ioannidou-Mouzaka, “Liquid-based cytology in breast fine needle aspiration: comparison with the conventional smear,” Acta Cytologica, vol. 47, no. 2, pp. 188–192, 2003.
[19]
P. Konofaos, K. Kontzoglou, J. Georgoulakis et al., “The role of ThinPrep cytology in the evaluation of estrogen and progesterone receptor content of breast tumors,” Surgical Oncology, vol. 15, no. 4, pp. 257–266, 2006.
[20]
E. Vigliar, I. Cozzolino, L. V. S. Fernandez et al., “Fine-needle cytology and flow cytometry assessment of reactive and lymphoproliferative processes of the breast,” Acta Cytologica, vol. 56, no. 2, pp. 130–138, 2012.
[21]
A. M. Domanski, N. Monsef, H. A. Domanski, D. Grabau, and M. Ferno, “Comparison of the oestrogen and progesterone receptors status in primary breast carcinomas as evaluated by immunohistochemistry and immunocytochemistry: a consecutive series of 267 patients,” Cytopathology, vol. 12, pp. 1365–2303, 2012.
[22]
S. E. Monaco, Y. Wu, L. A. Teot, and G. Cai, “Assessment of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status in the fine needle aspirates of metastatic breast carcinomas,” Diagnostic Cytopathology, vol. 41, no. 4, pp. 308–315, 2013.
[23]
T. Sauer, K. Ebeltoff, M. K. Pedersen, and R. Karesen, “Liquid based material from fine needle aspirates from breast carcinomas offers the possibility of long-time storage without significant loss of immunoreactivity of estrogen and progesterone receptors,” CytoJournal, vol. 31, pp. 7–24, 2010.
[24]
J. Ferguson, P. Chamberlain, H. M. Cramer, and H. H. Wu, “ER, PR, HER2 immunocytochemistry on cell-transferred cytologic smears of primary and metastatic breast carcinomas: a comparison study with formalin-fixed cell blocks and surgical biopsies,” Diagnostic Cytopathology, vol. 41, no. 7, pp. 575–581, 2013.
[25]
A. Shabaik, G. Lin, M. Peterson et al., “Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma,” Diagnostic Cytopathology, vol. 39, no. 5, pp. 328–332, 2011.
[26]
S. C. Seferina, M. Nap, F. van den Berkmortel, J. Wals, A. C. Voogd, and V. C. Tian-Heijnene, “Reliability of receptor assessment on core needle biopsy in breast cancer patients,” Tumour Biology, vol. 34, no. 2, pp. 987–994, 2013.
[27]
M. D. Kinsella, G. G. Birdsong, M. T. Siddiqui, C. Cohen, and K. Z. Handley, “Immunohistochemical detection of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 in formalin-fixed breast carcinoma cell block preparations: correlation of result to corresponding tissue block samples,” Diagnostic Cytopathology, vol. 41, no. 3, pp. 192–198, 2013.
[28]
E. Beraki and T. Sauer, “Determination of Her2 status on FNAC material from breast carcinomas using in situ hybridization with dual chromogen visualisation with silver enhancement (dual SISH),” CytoJournal, vol. 7, article 21, 2010.
[29]
A. M. Bofin, B. Ytterhus, C. Martin, J. J. O'Leary, and B. M. Hagmar, “Detection and quantitation of HER-2 gene amplification and protein expression in breast carcinoma,” American Journal of Clinical Pathology, vol. 122, no. 1, pp. 110–119, 2004.
[30]
A. C. Ladd, E. O'Sullivan-Mejia, T. Lea et al., “Preservation of fine-needle aspiration specimens for future use in RNA-based molecular testing,” Cancer Cytopathology, vol. 119, no. 2, pp. 102–110, 2011.
[31]
C. Uzan, F. Andre, V. Scott et al., “Fine-needle aspiration for nucleic acid-ased molecular analyses in breast cancer,” Cancer Cytopathology, vol. 117, no. 1, pp. 32–39, 2009.
[32]
S. J. Shin, B. Chen, E. Hyjek, and M. Vazquez, “Immunocytochemistry and fluorescence in situ hybridization in HER-2/neu status in cell block preparations,” Acta Cytologica, vol. 51, no. 4, pp. 552–557, 2007.
[33]
M. C. Chang, P. Crystal, and T. J. Colgan, “The evolving role of axillary lymph node fine-needle aspiration in the management of carcinoma of the breast,” Cancer Cytopathology, vol. 119, no. 5, pp. 328–334, 2011.
[34]
A. Oz, F. Demirkazik, M. Akpinar, I. Soygur, S. Onder, and A. Uner, “Efficiency of ultrasound and ultrasound-guided fine needle aspiration cytology in preoperative assessment of axillary lymph node metastases in breast cancer,” Journal of Breast Cancer, vol. 15, no. 2, pp. 211–217, 2012.
[35]
T. Sauer and V. Suciu, “The role of preoperative axillary lymph node fine needle aspiration in locoregional staging of breast cancer,” Annales de Pathologie, vol. 32, no. 6, pp. e24–e28, 2012.