Background. In patients with hepatocellular carcinoma, selection criteria for transarterial hepatic selective internal radiotherapy are imprecise. Additionally, radiographic parameters to predict outcome of transarterial hepatic selective internal radiotherapy have not been fully characterized. Patients and methods. Computed tomography (CT) scans of 23 patients with unresectable primary hepatocellular carcinoma before and after transarterial hepatic selective internal radiotherapy with yttrium-90 microspheres were retrospectively reviewed. Selected radiographic parameters were evaluated and correlated with progression-free survival and overall survival. Response to treatment was assessed with Response RECIST 1.1 and Morphology, Attenuation, Size, and Structure (MASS) criteria. Results. On the post-SIRT CT, 68% of tumors demonstrated decreased size (median decrease of 0.8?cm, ); 64% had decreased attenuation (median decrease 5.7?HU, ), and 48% demonstrated increased tumor necrosis ( ). RECIST-defined partial response was seen in 10% patients, stable disease in 80%, and 10% had disease progression. Median progression-free survival was 3.9 months (range, 3.3 to 7.3), and median overall survival was 11.2 months (7.1 to 31.1). Pretreatment lower hepatopulmonary shunt fraction, central hypervascularity, and well-defined tumor margins were associated with improved progression-free survival. Conclusion. In patients with unresectable hepatocellular carcinoma, pretreatment CT parameters may predict favorable response to SIRT and improve patient selection. 1. Introduction Hepatocellular carcinoma is the third leading cause of cancer mortality worldwide [1]. It frequently occurs in patients who have chronic liver disease and cirrhosis [2, 3]. Curative treatment options include liver transplant, resection, and ablation [4]. However, approximately two thirds of patients are not candidates for curative therapy when diagnosed [5]. In selected patients, transarterial chemoembolization or radioembolization may be options for palliative treatment [6–9]. For patients with advanced hepatocellular carcinoma who are not candidates for curative or liver-directed therapies, targeted molecular therapy with sorafenib may improve survival [10, 11]. In the past, hepatocellular carcinoma had been considered a radioresistant tumor because of the limited effect of external beam radiation doses. This was caused, in part, by technical limitations imposed by the overlying anatomy [12, 13]. In selective internal radiotherapy (SIRT) with yttrium-90 microspheres, radioactive particles are
References
[1]
D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Estimating the world cancer burden: globocan 2000,” International Journal of Cancer, vol. 94, no. 2, pp. 153–156, 2001.
[2]
D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005.
[3]
F. X. Bosch, J. Ribes, M. Díaz, and R. Cléries, “Primary liver cancer: worldwide incidence and trends,” Gastroenterology, vol. 127, pp. S5–S16, 2004.
[4]
V. Mazzaferro, E. Regalia, R. Doci et al., “Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis,” The New England Journal of Medicine, vol. 334, no. 11, pp. 693–699, 1996.
[5]
J. M. Llovet, M. I. Real, X. Monta?a et al., “Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial,” The Lancet, vol. 359, no. 9319, pp. 1734–1739, 2002.
[6]
K. Sato, R. J. Lewandowski, J. T. Bui et al., “Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization,” CardioVascular and Interventional Radiology, vol. 29, no. 4, pp. 522–529, 2006.
[7]
D. S. K. Lu, N. C. Yu, S. S. Raman et al., “Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver,” Radiology, vol. 234, no. 3, pp. 954–960, 2005.
[8]
Y. K. Maddala, L. Stadheim, J. C. Andrews et al., “Drop-out rates of patients with hepatocellular cancer listed for liver transplantation: outcome with chemoembolization,” Liver Transplantation, vol. 10, no. 3, pp. 449–455, 2004.
[9]
J. Bruix and M. Sherman, “Management of hepatocellular carcinoma,” Hepatology, vol. 42, pp. 1208–1236, 2005.
[10]
A. Cheng, Y. Kang, Z. Chen et al., “Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial,” The Lancet Oncology, vol. 10, no. 1, pp. 25–34, 2009.
[11]
J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008.
[12]
J. A. Ingold, G. B. Reed, H. S. Kaplan, and M. A. Bagshaw, “Radiation hepatitis,” The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine, vol. 93, pp. 200–208, 1965.
[13]
L. A. Dawson, C. J. McGinn, and T. S. Lawrence, “Conformal chemoradiation for primary and metastatic liver malignancies,” Seminars in Surgical Oncology, vol. 21, no. 4, pp. 249–255, 2003.
[14]
A. S. Kennedy, C. Nutting, D. Coldwell, J. Gaiser, and C. Drachenberg, “Pathologic response and microdosimetry of 90Y microspheres in man: review of four explanted whole livers,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 5, pp. 1552–1563, 2004.
[15]
S. Leoni, F. Piscaglia, R. Golfieri et al., “The impact of vascular and nonvascular findings on the noninvasive diagnosis of small hepatocellular carcinoma based on the EASL and AASLD criteria,” American Journal of Gastroenterology, vol. 105, no. 3, pp. 599–609, 2010.
[16]
J. Bruix and M. Sherman, “Management of hepatocellular carcinoma: an update,” Hepatology, vol. 53, no. 3, pp. 1020–1022, 2011.
[17]
J. M. Llovet, J. Fuster, and J. Bruix, “The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma,” Liver Transplantation, vol. 10, pp. S115–S120, 2004.
[18]
J. M. Llovet, A. Burroughs, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 362, no. 9399, pp. 1907–1917, 2003.
[19]
R. Salem and K. G. Thurston, “Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies, part 2: special topics,” Journal of Vascular and Interventional Radiology, vol. 17, no. 9, pp. 1425–1439, 2006.
[20]
R. Salem and K. G. Thurston, “Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies, part 3: comprehensive literature review and future direction,” Journal of Vascular and Interventional Radiology, vol. 17, no. 10, pp. 1571–1593, 2006.
[21]
R. Salem and K. G. Thurston, “Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies, part 1: technical and methodologic considerations,” Journal of Vascular and Interventional Radiology, vol. 17, no. 8, pp. 1251–1278, 2006.
[22]
E. A. Eisenhauer, P. Therasse, J. Bogaerts et al., “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” European Journal of Cancer, vol. 45, no. 2, pp. 228–247, 2009.
[23]
A. D. Smith, S. N. Shah, B. I. Rini, M. L. Lieber, and E. M. Remer, “Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy,” American Journal of Roentgenology, vol. 194, no. 6, pp. 1470–1478, 2010.
[24]
A. Forner, C. Ayuso, M. Varela et al., “Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable?” Cancer, vol. 115, no. 3, pp. 616–623, 2009.
[25]
M. Kudo, S. Kubo, K. Takayasu et al., “Response Evaluation Criteria in Cancer of the Liver (RECICL) proposed by the Liver Cancer Study Group of Japan (2009 revised version),” Hepatology Research, vol. 40, no. 7, pp. 686–692, 2010.
[26]
C. Wong, R. Salem, S. Raman, V. L. Gates, and H. J. Dworkin, “Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG pet: a comparison with CT or MRI,” European Journal of Nuclear Medicine, vol. 29, no. 6, pp. 815–820, 2002.
[27]
A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist, vol. 13, no. 2, pp. 120–125, 2008.
[28]
R. Lencioni and J. M. Llovet, “Modified recist (mRECIST) assessment for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 30, no. 1, pp. 52–60, 2010.
[29]
K. W. Kim, J. M. Lee, and B. I. Choi, “Assessment of the treatment response of HCC,” Abdominal Imaging, vol. 36, no. 3, pp. 300–314, 2011.
[30]
Y. K. Cho, J. W. Chung, J. K. Kim, et al., “Comparison of 7 staging systems for patients with hepatocellular carcinoma undergoing transarterial chemoembolization,” Cancer, vol. 112, no. 2, pp. 352–361, 2008.
[31]
S. Faivre, M. Zappa, V. Vilgrain et al., “Changes in tumor density in patients with advanced hepatocellular carcinoma treated with sunitinib,” Clinical Cancer Research, vol. 17, no. 13, pp. 4504–4512, 2011.
[32]
M. Horger, U. M. Lauer, C. Schraml et al., “Early MRI response monitoring of patients with advanced hepatocellular carcinoma under treatment with the multikinase inhibitor sorafenib,” BMC Cancer, vol. 9, article 208, 2009.
[33]
J. Edeline, E. Boucher, Y. Rolland et al., “Comparison of tumor response by Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma,” Cancer, vol. 118, no. 1, pp. 147–156, 2012.
[34]
I. Zerizer, A. Al-Nahhas, D. Towey, et al., “The role of early 18F-FDG PET/CT in prediction of progression-free survival after 90Y radioembolization: comparison with RECIST and tumour density criteria,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, pp. 1391–1399, 2012.