The intestinal microbiome plays an important role in human physiology. Next-generation sequencing technologies, knockout and gnotobiotic mouse models, fecal transplant data and epidemiologic studies have accelerated our understanding of microbiome abnormalities seen in immune diseases and malignancies. Dysbiosis is the disturbed microbiome ecology secondary to external pressures such as host diseases, medications, diet and genetic conditions often leading to abnormalities of the host immune system. Specifically dysbiosis has been shown to lower circulating lymphocytes, and increase neutrophil to lymphocyte ratio, a finding which has been associated with a decreased survival in women with breast cancers. Dysbiosis also plays a role in the recycling of estrogens via the entero-hepatic circulation, increasing estrogenic potency in the host, which is another leading cause of breast malignancy. Non-modifiable factors such as age and genetic mutations disrupt the microbiome, but modifiable factors such as diet may also lead to profound disruptions as well. A better understanding of dietary factors and how they disrupt the microbiome may lead to beneficial nutritional interventions for breast cancer patients. 1. Introduction The human digestive tract is known to host trillions of microbes collectively called the intestinal microbiota [1–4]. A commensally, mutually beneficial relationship exists between the human host and these microbiota. The host’s digestive tract provides the nutrient niche for the microbiota, while the microbiota protects against pathogens, helps in the development of the immune system, aids in nutrient reclamation from food by fermenting indigestible fiber to short chain fatty acids, produces essential amino acids and vitamins, helps in the absorption of minerals, and aids the breakdown of dietary toxins and carcinogens [1–3, 5]. The intestinal microbiota also helps the growth and differentiation of enterocytes and colonocytes, thus maintaining the intestinal barrier against potential pathogens [6]. 2. Origin of Microbiome The intestinal microbiota is maternally inherited at birth as the newborn is delivered through the vaginal canal [7–9]. Later in development, factors both dependent on host choices such as diet and independent of host choices such as genetics and age modify the intestinal microbiota [10]. Insights into the dynamic structure of intestinal microbiota have become possible with the advent of next-generation sequencing technologies; such technologies are able to fully characterize the polymorphism of bacterial communities
References
[1]
I. Sekirov, N. Gill, M. Jogova et al., “Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota,” Gut Microbes, vol. 1, no. 1, pp. 30–41, 2010.
[2]
A. J. Macpherson and N. L. Harris, “Interactions between commensal intestinal bacteria and the immune system,” Nature Reviews Immunology, vol. 4, no. 6, pp. 478–485, 2004.
[3]
L. V. Hooper and J. I. Gordon, “Commensal host-bacterial relationships in the gut,” Science, vol. 292, no. 5519, pp. 1115–1118, 2001.
[4]
L. V. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon, “Molecular analysis of commensal host-microbial relationships in the intestine,” Science, vol. 291, no. 5505, pp. 881–884, 2001.
[5]
F. B?ckhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon, “Host-bacterial mutualism in the human intestine,” Science, vol. 307, no. 5717, pp. 1915–1920, 2005.
[6]
C. A. Allen and A. G. Torres, “Host-microbe communication within the GI tract,” Advances in Experimental Medicine and Biology, vol. 635, pp. 93–101, 2008.
[7]
R. E. Ley, M. Hamady, C. Lozupone et al., “Evolution of mammals and their gut microbes,” Science, vol. 320, no. 5883, pp. 1647–1651, 2008.
[8]
H. Ochman, M. Worobey, C.-H. Kuo et al., “Evolutionary relationships of wild hominids recapitulated by gut microbial communities,” PLoS Biology, vol. 8, no. 11, Article ID e1000546, 2010.
[9]
Y. Li, A. I. Ismail, Y. Ge, M. Tellez, and W. Sohn, “Similarity of bacterial populations in saliva from African-American mother-child dyads,” Journal of Clinical Microbiology, vol. 45, no. 9, pp. 3082–3085, 2007.
[10]
D. Mariat, O. Firmesse, F. Levenez et al., “The firmicutes/bacteroidetes ratio of the human microbiota changes with age,” BMC Microbiology, vol. 9, article 123, 2009.
[11]
S. Vaishnava, M. Yamamoto, K. M. Severson et al., “The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine,” Science, vol. 334, no. 6053, pp. 255–258, 2011.
[12]
S. Schloissnig, M. Arumugam, S. Sunagawa, et al., “Genomic variation landscape of the human gut microbiome,” Nature, vol. 493, no. 7430, pp. 45–50, 2012.
[13]
G. M. Weinstock, “Genomic approaches to studying the human microbiota,” Nature, vol. 489, no. 7415, pp. 250–256, 2012.
[14]
A. Lin, E. M. Bik, E. K. Costello, et al., “Distinct distal gut microbiome diversity and composition in healthy children from bangladesh and the United States,” PLoS ONE, vol. 8, no. 1, Article ID e53838, 2013.
[15]
T. Z. DeSantis Jr., P. Hugenholtz, K. Keller et al., “NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes,” Nucleic Acids Research, vol. 34, pp. W394–W399, 2006.
[16]
T. Z. DeSantis, P. Hugenholtz, N. Larsen et al., “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5069–5072, 2006.
[17]
P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight, and J. I. Gordon, “The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice,” Science Translational Medicine, vol. 1, no. 6, p. 6ra14, 2009.
[18]
I. Cho and M. J. Blaser, “The human microbiome: at the interface of health and disease,” Nature Reviews Genetics, vol. 13, no. 4, pp. 260–270, 2012.
[19]
M. B. Geuking, J. Cahenzli, M. A. E. Lawson et al., “Intestinal bacterial colonization induces mutualistic regulatory T cell responses,” Immunity, vol. 34, no. 5, pp. 794–806, 2011.
[20]
A. J. Macpherson, M. B. Geuking, and K. D. McCoy, “Innate and adaptive immunity in host-microbiota mutualism,” Frontiers in Bioscience, vol. 4, pp. 685–698, 2012.
[21]
A. Y. Rudensky and A. V. Chervonsky, “A narrow circle of mutual friends,” Immunity, vol. 34, no. 5, pp. 697–699, 2011.
[22]
M. B. Geuking, K. D. McCoy, and A. J. Macpherson, “The continuum of intestinal CD4+ T cell adaptations in host-microbial mutualism,” Gut Microbes, vol. 2, no. 6, pp. 353–357, 2011.
[23]
W. S. Garrett and L. H. Glimcher, “T-bet?/? RAG2?/? ulcerative colitis: the role of T-bet as a peacekeeper of host-commensal relationships,” Cytokine, vol. 48, no. 1-2, pp. 144–147, 2009.
[24]
N. Powell, A. W. Walker, E. Stolarczyk, et al., “The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells,” Immunity, vol. 37, no. 4, pp. 674–684, 2012.
[25]
W. S. Garrett, G. M. Lord, S. Punit et al., “Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system,” Cell, vol. 131, no. 1, pp. 33–45, 2007.
[26]
M. Vijay-Kumar, J. D. Aitken, F. A. Carvalho et al., “Metabolie syndrome and altered gut microbiota in mice lacking toll-like receptor 5,” Science, vol. 328, no. 5975, pp. 228–231, 2010.
[27]
G. P. Christophi, C. A. Hudson, R. C. Gruber et al., “SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients,” Laboratory Investigation, vol. 88, no. 3, pp. 243–255, 2008.
[28]
B. A. Croker, B. R. Lawson, S. Rutschmann et al., “Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15028–15033, 2008.
[29]
S. A. Hirota, J. Ng, A. Lueng et al., “NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis,” Inflammatory Bowel Diseases, vol. 17, no. 6, pp. 1359–1372, 2011.
[30]
Q. Pan, J. Mathison, C. Fearns et al., “MDP-induced interleukin-1β processing requires Nod2 and CIAS1/NALP3,” Journal of Leukocyte Biology, vol. 82, no. 1, pp. 177–183, 2007.
[31]
T. Tanabe, M. Chamaillard, Y. Ogura et al., “Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition,” EMBO Journal, vol. 23, no. 7, pp. 1587–1597, 2004.
[32]
L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interactions between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268–1273, 2012.
[33]
Y.-G. Kim, M. H. Shaw, N. Warner et al., “Cutting Edge: Crohn's disease-associated Nod2 mutation limits production of proinflammatory cytokines to protect the host from Enterococcus faecalis-induced lethality,” Journal of Immunology, vol. 187, no. 6, pp. 2849–2852, 2011.
[34]
T. S. Plantinga, L. A. B. Joosten, and M. G. Netea, “ATG16L1 polymorphisms are associated with NOD2-induced hyperinflammation,” Autophagy, vol. 7, no. 9, pp. 1074–1075, 2011.
[35]
D. N. Frank, C. E. Robertson, C. M. Hamm et al., “Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 179–184, 2011.
[36]
A. Kaser, S. Zeissig, and R. S. Blumberg, “Genes and environment: how will our concepts on the pathophysiology of IBD develop in the future?” Digestive Diseases, vol. 28, no. 3, pp. 395–405, 2010.
[37]
S. E. Winter, P. Thiennimitr, M. G. Winter et al., “Gut inflammation provides a respiratory electron acceptor for Salmonella,” Nature, vol. 467, no. 7314, pp. 426–429, 2010.
[38]
K. Meijer, P. De Vos, and M. G. Priebe, “Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health?” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 6, pp. 715–721, 2010.
[39]
Y. Yano, T. Matsui, H. Uno, F. Hirai, K. Futami, and A. Iwashita, “Risks and clinical features of colorectal cancer complicating Crohn's disease in Japanese patients,” Journal of Gastroenterology and Hepatology, vol. 23, no. 11, pp. 1683–1688, 2008.
[40]
J. J. Kovarik, W. Tillinger, J. Hofer et al., “Impaired anti-inflammatory efficacy of n-butyrate in patients with IBD,” European Journal of Clinical Investigation, vol. 41, no. 3, pp. 291–298, 2011.
[41]
D. L. Topping and P. M. Clifton, “Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides,” Physiological Reviews, vol. 81, no. 3, pp. 1031–1064, 2001.
[42]
N. M. Saarinen, A. I. Smeds, J. L. Penalvo, T. Nurmi, H. Adlercreutz, and S. Makela, “Flaxseed ingestion alters ratio of enterolactone enantiomers in human serum,” Journal of Nutrition and Metabolism, vol. 2010, Article ID 403076, 5 pages, 2010.
[43]
S. H. Albeituni and J. Yan, “The effects of beta-Glucans on dendritic cells and implications for cancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 13, no. 5, pp. 689–698, 2013.
[44]
E. Aleem, “beta-Glucans and their applications in cancer therapy: focus on human studies,” Anti-Cancer Agents in Medicinal Chemistry, vol. 13, no. 5, pp. 709–719, 2013.
[45]
M. Driscoll, R. Hansen, C. Ding, D. E. Cramer, and J. Yan, “Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy,” Cancer Biology & Therapy, vol. 8, no. 3, pp. 218–225, 2009.
[46]
K. Ito, Y. Masuda, Y. Yamasaki, Y. Yokota, and H. Nanba, “Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression,” International Immunopharmacology, vol. 9, no. 10, pp. 1189–1196, 2009.
[47]
Y. Masuda, M. Inoue, A. Miyata, S. Mizuno, and H. Nanba, “Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice,” International Immunopharmacology, vol. 9, no. 5, pp. 620–626, 2009.
[48]
O. Rop, J. Mlcek, and T. Jurikova, “Beta-glucans in higher fungi and their health effects,” Nutrition Reviews, vol. 67, no. 11, pp. 624–631, 2009.
[49]
D. M.-Y. Sze and G. C.-F. Chan, “Supplements for immune enhancement in hematologic malignancies,” Hematology, pp. 313–319, 2009.
[50]
V. Vetvicka, A. Vashishta, S. Saraswat-Ohri, and J. Vetvickova, “Immunological effects of yeast- and mushroom-derived β-glucans,” Journal of Medicinal Food, vol. 11, no. 4, pp. 615–622, 2008.
[51]
K. Yamamoto, T. Kimura, A. Sugitachi, and N. Matsuura, “Anti-angiogenic and anti-metastatic effects of β-1,3-D-glucan purified from hanabiratake, Sparassis crispa,” Biological and Pharmaceutical Bulletin, vol. 32, no. 2, pp. 259–263, 2009.
[52]
T. J. Yoon, S. Koppula, and K. H. Lee, “The Effects of beta-glucans on cancer metastasis,” Anti-Cancer Agents in Medicinal Chemistry, vol. 13, no. 5, pp. 699–708, 2013.
[53]
S. L. H. Williamson, A. Kartheuser, J. Coaker et al., “Intestinal tumorigenesis in the Apc1638N mouse treated with aspirin and resistant starch for up to 5 months,” Carcinogenesis, vol. 20, no. 5, pp. 805–810, 1999.
[54]
B. Hippe, J. Zwielehner, K. Liszt, C. Lassl, F. Unger, and A. G. Haslberger, “Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age,” FEMS Microbiology Letters, vol. 316, no. 2, pp. 130–135, 2011.
[55]
C. Ramirez-Farias, K. Slezak, Z. Fuller, A. Duncan, G. Holtrop, and P. Louis, “Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii,” British Journal of Nutrition, vol. 101, no. 4, pp. 541–550, 2009.
[56]
D. R. Donohoe, N. Garge, X. Zhang et al., “The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon,” Cell Metabolism, vol. 13, no. 5, pp. 517–526, 2011.
[57]
R. F. J. Benus, T. S. Van Der Werf, G. W. Welling et al., “Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects,” British Journal of Nutrition, vol. 104, no. 5, pp. 693–700, 2010.
[58]
C.-Z. Wang, X.-Q. Ma, D.-H. Yang et al., “Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria,” BMC Microbiology, vol. 10, article 115, 2010.
[59]
H. Adlercreutz, “Lignans and human health,” Critical Reviews in Clinical Laboratory Sciences, vol. 44, no. 5-6, pp. 483–525, 2007.
[60]
A. Kilkkinen, P. Pietinen, T. Klaukka, J. Virtamo, P. Korhonen, and H. Adlercreutz, “Use of oral antimicrobials decreases serum enterolactone concentration,” American Journal of Epidemiology, vol. 155, no. 5, pp. 472–477, 2002.
[61]
H. A. Ward and G. G. C. Kuhnle, “Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 170–175, 2010.
[62]
I. E. J. Milder, A. Kuijsten, I. C. W. Arts et al., “Relation between plasma enterodiol and enterolactone and dietary intake of lignans in a dutch endoscopy-based population,” Journal of Nutrition, vol. 137, no. 5, pp. 1266–1271, 2007.
[63]
M. Cotterchio, B. A. Boucher, N. Kreiger, C. A. Mills, and L. U. Thompson, “Dietary phytoestrogen intake—lignans and isoflavones—and breast cancer risk (Canada),” Cancer Causes and Control, vol. 19, no. 3, pp. 259–272, 2008.
[64]
J. E. Cade, V. J. Burley, and D. C. Greenwood, “Dietary fibre and risk of breast cancer in the UK Women's Cohort Study,” International Journal of Epidemiology, vol. 36, no. 2, pp. 431–438, 2007.
[65]
J. E. Cade, E. F. Taylor, V. J. Burley, and D. C. Greenwood, “Common dietary patterns and risk of breast cancer: analysis from the United Kingdom Women's Cohort Study,” Nutrition and Cancer, vol. 62, no. 3, pp. 300–306, 2010.
[66]
C. J. Fabian, B. F. Kimler, C. M. Zalles et al., “Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside,” Cancer Prevention Research, vol. 3, no. 10, pp. 1342–1350, 2010.
[67]
P. Pietinen, K. Stumpf, S. M?nnist?, V. Kataja, M. Uusitupa, and H. Adlercreutz, “Serum enterolactone and risk of breast cancer: a case-control study in Eastern Finland,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 4, pp. 339–344, 2001.
[68]
P. Guglielmini, A. Rubagotti, and F. Boccardo, “Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study,” Breast Cancer Research and Treatment, vol. 132, no. 2, pp. 661–668, 2012.
[69]
A. K. Zaineddin, A. Vrieling, K. Buck et al., “Serum enterolactone and postmenopausal breast cancer risk by estrogen, progesterone and herceptin 2 receptor status,” International Journal of Cancer, vol. 130, no. 6, pp. 1401–1410, 2012.
[70]
R. G. Ziegler, J. M. Faupel-Badger, L. Y. Sue et al., “A new approach to measuring estrogen exposure and metabolism in epidemiologic studies,” Journal of Steroid Biochemistry and Molecular Biology, vol. 121, no. 3–5, pp. 538–545, 2010.
[71]
M. S. Roberts, B. M. Magnusson, F. J. Burczynski, and M. Weiss, “Enterohepatic circulation: physiological, pharmacokinetic and clinical implications,” Clinical Pharmacokinetics, vol. 41, no. 10, pp. 751–790, 2002.
[72]
C. S. Plottel and M. J. Blaser, “Microbiome and malignancy,” Cell Host and Microbe, vol. 10, no. 4, pp. 324–335, 2011.
[73]
H. Tilg and J. R. Marchesi, “Too much fat for the gut's microbiota,” Gut, vol. 61, no. 4, pp. 474–475, 2012.
[74]
K. Gloux, O. Berteau, H. El Oumami, F. Béguet, M. Leclerc, and J. Doré, “A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 4539–4546, 2011.
[75]
B. D. Wallace, H. Wang, K. T. Lane et al., “Alleviating cancer drug toxicity by inhibiting a bacterial enzyme,” Science, vol. 330, no. 6005, pp. 831–835, 2010.
[76]
C. G. Woolcott, Y. B. Shvetsov, F. Z. Stanczyk et al., “Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the multiethnic cohort study,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 125–134, 2010.
[77]
P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al., “A core gut microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp. 480–484, 2009.
[78]
M. Bajzer and R. J. Seeley, “Physiology: obesity and gut flora,” Nature, vol. 444, no. 7122, pp. 1009–1010, 2006.
[79]
K. Clément, “Bariatric surgery, adipose tissue and gut microbiota,” International Journal of Obesity, vol. 35, no. 3, pp. S7–S15, 2011.
[80]
D. Compare and G. Nardone, “Contribution of gut microbiota to colonic and extracolonic cancer development,” Digestive Diseases, vol. 29, no. 6, pp. 554–561, 2011.
[81]
S. Abu-Abid, A. Szold, and J. Klausner, “Obesity and cancer,” Journal of Medicine, vol. 33, no. 1–4, pp. 73–86, 2002.
[82]
L. Wen, R. E. Ley, P. Y. Volchkov et al., “Innate immunity and intestinal microbiota in the development of Type 1 diabetes,” Nature, vol. 455, no. 7216, pp. 1109–1113, 2008.
[83]
N. Sudo, Y. Chida, Y. Aiba et al., “Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice,” Journal of Physiology, vol. 558, no. 1, pp. 263–275, 2004.
[84]
T. B. Clarke, K. M. Davis, E. S. Lysenko, A. Y. Zhou, Y. Yu, and J. N. Weiser, “Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity,” Nature Medicine, vol. 16, no. 2, pp. 228–231, 2010.
[85]
B. Wei, G. Wingender, D. Fujiwara et al., “Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells,” Journal of Immunology, vol. 184, no. 3, pp. 1218–1226, 2010.
[86]
B. C. Mercier, E. Ventre, M. L. Fogeron, et al., “NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells,” PLoS ONE, vol. 7, no. 7, Article ID e42170, 2012.
[87]
L. Franchi, N. Warner, K. Viani, and G. Nu?ez, “Function of Nod-like receptors in microbial recognition and host defense,” Immunological Reviews, vol. 227, no. 1, pp. 106–128, 2009.
[88]
A. D. Gritzapis, I. F. Voutsas, E. Lekka et al., “Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties,” Journal of Immunology, vol. 181, no. 1, pp. 146–154, 2008.
[89]
J. Gui, L. M. Mustachio, D. M. Su, and R. W. Craig, “Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma,” Aging and Disease, vol. 3, no. 3, pp. 280–290, 2012.
[90]
C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, no. 7415, pp. 231–241, 2012.
[91]
H. Chung, S. J. Pamp, J. A. Hill, et al., “Gut immune maturation depends on colonization with a host-specific microbiota,” Cell, vol. 149, no. 7, pp. 1578–1593, 2012.
[92]
C. W. Kaplan, X. Ma, A. Paranjpe et al., “Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes,” Infection and Immunity, vol. 78, no. 11, pp. 4773–4778, 2010.
[93]
I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009.
[94]
S. C. Ng, J. L. Benjamin, N. E. McCarthy et al., “Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease,” Inflammatory Bowel Diseases, vol. 17, no. 10, pp. 2027–2037, 2011.
[95]
S. Dasgupta and D. L. Kasper, “Novel tools for modulating immune responses in the host-polysaccharides from the capsule of commensal bacteria,” Advances in Immunology, vol. 106, pp. 61–91, 2010.
[96]
N. Iwabuchi, N. Takahashi, J.-Z. Xiao, K. Miyaji, and K. Iwatsuki, “In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria,” Microbiology and Immunology, vol. 51, no. 7, pp. 649–660, 2007.
[97]
W. Cozen, A. S. Hamilton, P. Zhao et al., “A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma,” Blood, vol. 114, no. 19, pp. 4014–4020, 2009.
[98]
N. C. Reading and D. L. Kasper, “The starting lineup: key microbial players in intestinal immunity and homeostasis,” Frontiers in Microbiology, vol. 2, article 148, 2011.
[99]
B. Stecher and W.-D. Hardt, “Mechanisms controlling pathogen colonization of the gut,” Current Opinion in Microbiology, vol. 14, no. 1, pp. 82–91, 2011.
[100]
K. Atarashi, Y. Umesaki, and K. Honda, “Microbiotal influence on T cell subset development,” Seminars in Immunology, vol. 23, no. 2, pp. 146–153, 2011.
[101]
K. Tsuda, K. Yamanaka, W. Linan et al., “Intratumoral injection of Propionibacterium acnes suppresses malignant melanoma by enhancing Th1 immune responses,” PLoS ONE, vol. 6, no. 12, Article ID e29020, 2011.
[102]
E. Gounaris, N. R. Blatner, K. Dennis et al., “T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis,” Cancer Research, vol. 69, no. 13, pp. 5490–5497, 2009.
[103]
M. Nanno, M. Morotomi, and H. Takayama, “Mutagenic activation of biliary metabolites of benzo(a)pyrene by β-glucuronidase-positive bacteria in human faeces,” Journal of Medical Microbiology, vol. 22, no. 4, pp. 351–355, 1986.
[104]
V. Blasco-Baque, M. Serino, J. N. Vergnes, et al., “High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: protective action of estrogens,” PLoS ONE, vol. 7, no. 11, Article ID e48220.
[105]
B. J. Shenker and J. M. DiRienzo, “Suppression of human peripheral blood lymphocytes by Fusobacterium nucleatum,” Journal of Immunology, vol. 132, no. 5, pp. 2357–2362, 1984.
[106]
W. Chua, K. A. Charles, V. E. Baracos, and S. J. Clarke, “Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer,” British Journal of Cancer, vol. 104, no. 8, pp. 1288–1295, 2011.
[107]
M. Kaneko, H. Nozawa, K. Sasaki et al., “Elevated neutrophil to lymphocyte ratio predicts poor prognosis in advanced colorectal cancer patients receiving oxaliplatin-based chemotherapy,” Oncology, vol. 82, no. 5, pp. 261–268, 2012.
[108]
Y. Kishi, S. Kopetz, Y. S. Chun, M. Palavecino, E. K. Abdalla, and J.-N. Vauthey, “Blood neutrophil-to-lymphocyte ratio predicts survival in patients with colorectal liver metastases treated with systemic chemotherapy,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 614–622, 2009.
[109]
G. J. Guthrie, K. A. Charles, C. S. Roxburgh, P. G. Horgan, D. C. McMillan, and S. J. Clarke, “The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer,” Critical Reviews in Oncology/Hematology, 2013.
[110]
H. Noh, M. Eomm, and A. Han, “Usefulness of pretreatment neutrophil to lymphocyte ratio in predicting disease-specific survival in breast cancer patients,” Journal of Breast Cancer, vol. 16, no. 1, pp. 55–59, 2013.
[111]
B. Azab, V. R. Bhatt, J. Phookan et al., “Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients,” Annals of Surgical Oncology, vol. 19, no. 1, pp. 217–224, 2012.
[112]
S. Loi, N. Sirtaine, F. Piette, et al., “Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98,” Journal of Clinical Oncology, vol. 31, no. 7, pp. 860–867, 2013.
[113]
L. J. Standish, E. S. Sweet, J. Novack et al., “Breast cancer and the immune system,” Journal of the Society for Integrative Oncology, vol. 6, no. 4, pp. 158–168, 2008.
[114]
S. M. A. Mahmoud, E. C. Paish, D. G. Powe et al., “Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer,” Journal of Clinical Oncology, vol. 29, no. 15, pp. 1949–1955, 2011.
[115]
N. R. West, S. E. Kost, S. D. Martin, et al., “Tumour-infiltrating FOXP3+ lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer,” British Journal of Cancer, vol. 108, no. 1, pp. 155–162, 2013.
[116]
I. Soerjomataram, J. Lortet-Tieulent, D. M. Parkin, et al., “Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions,” The Lancet, vol. 380, no. 9856, pp. 1840–1850, 2012.
[117]
K. Nasseri, P. K. Mills, and M. Allan, “Cancer incidence in the Middle Eastern population of California, 1988–2004,” Asian Pacific Journal of Cancer Prevention, vol. 8, no. 3, pp. 405–411, 2007.
[118]
B. D. Muegge, J. Kuczynski, D. Knights et al., “Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans,” Science, vol. 332, no. 6032, pp. 970–974, 2011.