全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

The Chemokine CXCL8 in Carcinogenesis and Drug Response

DOI: 10.1155/2013/859154

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response. 1. Introduction Chemokines, a family of structurally related 8–10?kDa protein molecules, are secreted in diverse tissue environments and are characterized by their involvement in the regulation of hematopoietic cells and inflammatory processes [1, 2]. To date, more than 50 chemokines, which signal through about 20 G-protein-coupled receptors, have been identified [1, 3, 4]. Chemokines are divided into 4 subfamilies (C, CC, CXC, and CX3C), based on their primary structure or function. The structural basis for their classification is the location of the main cysteine residues in their N terminal regions [5–7]. Functionally, chemokines are categorized as “inflammatory” or “homeostatic.” Inflammatory chemokines are released primarily in response to infections; homeostatic chemokines are constitutively secreted at specific sites in the body, such as in the lymphoid organs, where they serve to attract cells that express cognate receptors [8–12]. Although genetic alterations determine the cell of origin of cancer, microenvironmental factors are now known to control the development and progression of the malignant process; hence, these factors are included as a new paradigm in Hallmarks of Cancer [13]. In addition to cancer cells, the tumor microenvironment includes fibroblasts, endothelial cells, macrophages, lymphocytes, neutrophils, and mast cells, all of which respond to various stimuli and communicate through contact and

References

[1]  S. A. Lira and G. C. Furtado, “The biology of chemokines and their receptors,” Immunologic Research, vol. 54, no. 1–3, pp. 111–120, 2012.
[2]  A. Zlotnik and O. Yoshie, “Chemokines: a new classification system and their role in immunity,” Immunity, vol. 12, no. 2, pp. 121–127, 2000.
[3]  F. Balkwill, “Cancer and the chemokine network,” Nature Reviews, vol. 4, no. 7, pp. 540–550, 2004.
[4]  D. Raman, P. J. Baugher, Y. M. Thu, and A. Richmond, “Role of chemokines in tumor growth,” Cancer Letters, vol. 256, no. 2, pp. 137–165, 2007.
[5]  M. Baggiolini, B. Dewald, and B. Moser, “Human chemokines: an update,” Annual Review of Immunology, vol. 15, pp. 675–705, 1997.
[6]  G. Opdenakker and J. van Damme, “Chemotactic factors, passive invasion and metastasis of cancer cells,” Immunology Today, vol. 13, no. 11, pp. 463–464, 1992.
[7]  D. Rossi and A. Zlotnik, “The biology of chemokines and their receptors,” Annual Review of Immunology, vol. 18, pp. 217–242, 2000.
[8]  J. Vandercappellen, J. van Damme, and S. Struyf, “The role of CXC chemokines and their receptors in cancer,” Cancer Letters, vol. 267, no. 2, pp. 226–244, 2008.
[9]  S. N. Mueller, K. A. Hosiawa-Meagher, B. T. Konieczny et al., “Regulation of homeostatic chemokine expression and cell trafficking during immune responses,” Science, vol. 317, no. 5838, pp. 670–674, 2007.
[10]  J. G. Cyster, “Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs,” Annual Review of Immunology, vol. 23, pp. 127–159, 2005.
[11]  M. D. Miller and M. S. Krangel, “Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines,” Critical Reviews in Immunology, vol. 12, no. 1-2, pp. 17–46, 1992.
[12]  D. Arenberg, “Chemokines in the biology of lung cancer,” Journal of Thoracic Oncology, vol. 1, no. 4, pp. 287–288, 2006.
[13]  D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[14]  C. Brigati, D. M. Noonan, A. Albini, and R. Benelli, “Tumors and inflammatory infiltrates: friends or foes?” Clinical & Experimental Metastasis, vol. 19, no. 3, pp. 247–258, 2002.
[15]  M. Erreni, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) and inflammation in colorectal cancer,” Cancer Microenvironment, vol. 4, no. 2, pp. 141–154, 2011.
[16]  A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008.
[17]  A. Sparmann and D. Bar-Sagi, “Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis,” Cancer Cell, vol. 6, no. 5, pp. 447–458, 2004.
[18]  M. G. Borrello, D. Degl'Innocenti, and M. A. Pierotti, “Inflammation and cancer: the oncogene-driven connection,” Cancer Letters, vol. 267, no. 2, pp. 262–270, 2008.
[19]  M. Egeblad, E. S. Nakasone, and Z. Werb, “Tumors as organs: complex tissues that interface with the entire organism,” Developmental Cell, vol. 18, no. 6, pp. 884–901, 2010.
[20]  S. L. Topalian, G. J. Weiner, and D. M. Pardoll, “Cancer immunotherapy comes of age,” Journal of Clinical Oncology, vol. 29, no. 36, pp. 4828–4836, 2011.
[21]  M. J. Grimshaw and F. R. Balkwill, “Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism,” European Journal of Immunology, vol. 31, no. 2, pp. 480–489, 2001.
[22]  L. A. Khawli, P. Hu, and A. L. Epstein, “Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors,” in Handbook of Experimental Pharmacology, vol. 181, pp. 291–328, 2008.
[23]  R. Bonecchi, M. Locati, and A. Mantovani, “Chemokines and cancer: a fatal attraction,” Cancer Cell, vol. 19, no. 4, pp. 434–435, 2011.
[24]  B. Farrow, D. Albo, and D. H. Berger, “The role of the tumor microenvironment in the progression of pancreatic cancer,” Journal of Surgical Research, vol. 149, no. 2, pp. 319–328, 2008.
[25]  G. Lazennec and A. Richmond, “Chemokines and chemokine receptors: new insights into cancer-related inflammation,” Trends in Molecular Medicine, vol. 16, no. 3, pp. 133–144, 2010.
[26]  D. Schadendorf, A. Moller, B. Algermissen, M. Worm, M. Sticherling, and B. M. Czarnetzki, “IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor,” The Journal of Immunology, vol. 151, no. 5, pp. 2667–2675, 1993.
[27]  B. J. Rollins, “Where the confusion began: cloning the first chemokine receptors,” The Journal of Immunology, vol. 183, no. 5, pp. 2893–2894, 2009.
[28]  K. Matsushima, E. T. Baldwin, and N. Mukaida, “Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines,” Chemical Immunology, vol. 51, pp. 236–265, 1992.
[29]  R. M. Strieter, S. L. Kunkel, H. J. Showell et al., “Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-α, LPS, and IL-1β,” Science, vol. 243, no. 4897, pp. 1467–1469, 1989.
[30]  D. J. Brat, A. C. Bellail, and E. G. van Meir, “The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 122–133, 2005.
[31]  W. E. Holmes, J. Lee, W. J. Kuang, G. C. Rice, and W. I. Wood, “Structure and functional expression of a human interleukin-8 receptor,” Science, vol. 253, no. 5025, pp. 1278–1280, 1991.
[32]  P. M. Murphy and H. L. Tiffany, “Cloning of complementary DNA encoding a functional human interleukin-8 receptor,” Science, vol. 253, no. 5025, pp. 1280–1283, 1991.
[33]  E. Azenshtein, T. Meshel, S. Shina, N. Barak, I. Keydar, and A. Ben-Baruch, “The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors,” Cancer Letters, vol. 217, no. 1, pp. 73–86, 2005.
[34]  A. Brysse, M. Mestdagt, M. Polette et al., “Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells,” Molecular Cancer Research, vol. 10, no. 1, pp. 121–132, 2012.
[35]  F. Balkwill, “Chemokine biology in cancer,” Seminars in Immunology, vol. 15, no. 1, pp. 49–55, 2003.
[36]  Y. M. Zhu and P. J. Woll, “Mitogenic effects of interleukin-8/CXCL8 on cancer cells,” Future Oncology, vol. 1, no. 5, pp. 699–704, 2005.
[37]  R. Brew, J. S. Erikson, D. C. West, A. R. Kinsella, J. Slavin, and S. E. Christmas, “Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro,” Cytokine, vol. 12, no. 1, pp. 78–85, 2000.
[38]  M. Miyamoto, Y. Shimizu, K. Okada, Y. Kashii, K. Higuchi, and A. Watanabe, “Effect of interleukin-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells,” Cancer Immunology, Immunotherapy, vol. 47, no. 1, pp. 47–57, 1998.
[39]  A. Li, M. L. Varney, and R. K. Singh, “Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype,” Clinical & Experimental Metastasis, vol. 21, no. 7, pp. 571–579, 2005.
[40]  Y. M. Zhu, S. J. Webster, D. Flower, and P. J. Woll, “Interleukin-8/CXCL8 is a growth factor for human lung cancer cells,” British Journal of Cancer, vol. 91, no. 11, pp. 1970–1976, 2004.
[41]  A. Li, M. L. Varney, J. Valasek, M. Godfrey, B. J. Dave, and R. K. Singh, “Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis,” Angiogenesis, vol. 8, no. 1, pp. 63–71, 2005.
[42]  Y. Ren, R. T. Poon, H. T. Tsui et al., “Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis,” Clinical Cancer Research, vol. 9, no. 16, part 1, pp. 5996–6001, 2003.
[43]  T. Ueda, E. Shimada, and T. Urakawa, “Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis,” Journal of Gastroenterology, vol. 29, no. 4, pp. 423–429, 1994.
[44]  F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001.
[45]  A. Mantovani, R. Bonecchi, and M. Locati, “Tuning inflammation and immunity by chemokine sequestration: decoys and more,” Nature Reviews, vol. 6, no. 12, pp. 907–918, 2006.
[46]  B. B. Aggarwal and B. Sung, “NF-κB in cancer: a matter of life and death,” Cancer Discovery, vol. 1, no. 6, pp. 469–471, 2011.
[47]  F. Rodier, J.-P. Coppé, C. K. Patil et al., “Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion,” Nature Cell Biology, vol. 11, no. 8, pp. 973–979, 2009.
[48]  J. Terzi?, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and colon cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101.e5–2114.e5, 2010.
[49]  F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004.
[50]  S. Maeda, M. Akanuma, Y. Mitsuno et al., “Distinct mechanism of helicobacter pylori-mediated NF-κB activation between gastric cancer cells and monocytic cells,” The Journal of Biological Chemistry, vol. 276, no. 48, pp. 44856–44864, 2001.
[51]  S. A. Sharma, M. K. R. Tummuru, M. J. Blaser, and L. D. Kerr, “Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-κB in gastric epithelial cells,” The Journal of Immunology, vol. 160, no. 5, pp. 2401–2407, 1998.
[52]  C.-Y. Wu, C.-J. Wang, C.-C. Tseng et al., “Helicobacter pylori promote gastric cancer cells invasion through a NF-κB and COX-2-mediated pathway,” World Journal of Gastroenterology, vol. 11, no. 21, pp. 3197–3203, 2005.
[53]  N. S. Rial, G. Lazennec, A. R. Prasad, R. S. Krouse, P. Lance, and E. W. Gerner, “Regulation of deoxycholate induction of CXCL8 by the adenomatous polyposis coli gene in colorectal cancer,” International Journal of Cancer, vol. 124, no. 10, pp. 2270–2280, 2009.
[54]  Y. Zhang, L. Wang, M. Zhang, M. Jin, C. Bai, and X. Wang, “Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway,” Journal of Cellular Physiology, vol. 227, no. 1, pp. 35–43, 2012.
[55]  A. Li, M. L. Varney, and R. K. Singh, “Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials,” Clinical Cancer Research, vol. 7, no. 10, pp. 3298–3304, 2001.
[56]  R. K. Singh, M. Gutman, R. Radinsky, C. D. Bucana, and I. J. Fidler, “Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice,” Cancer Research, vol. 54, no. 12, pp. 3242–3247, 1994.
[57]  Q. Wang, N. Huber, G. Noel et al., “NF-κβ inhibition is ineffective in blocking cytokine-induced IL-8 production but P38 and STAT1 inhibitors are effective,” Inflammation Research, vol. 61, no. 9, pp. 977–985, 2012.
[58]  H. Kulbe, N. R. Levinson, F. Balkwill, and J. L. Wilson, “The chemokine network in cancer—much more than directing cell movement,” International Journal of Developmental Biology, vol. 48, no. 5-6, pp. 489–496, 2004.
[59]  I. U. Schraufstatter, J. Chung, and M. Burger, “IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 280, no. 6, pp. L1094–L1103, 2001.
[60]  M. Q. Li, X. Z. Luo, Y. H. Meng et al., “CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway,” Human Reproduction, vol. 27, no. 7, pp. 2107–2116, 2012.
[61]  H. C. Lane, A. R. Anand, and R. K. Ganju, “Cbl and Akt regulate CXCL8-induced and CXCR1- and CXCR2-mediated chemotaxis,” International Immunology, vol. 18, no. 8, pp. 1315–1325, 2006.
[62]  G. Venkatakrishnan, R. Salgia, and J. E. Groopman, “Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells,” The Journal of Biological Chemistry, vol. 275, no. 10, pp. 6868–6875, 2000.
[63]  F. Luppi, A. M. Longo, W. I. de Boer, K. F. Rabe, and P. S. Hiemstra, “Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation,” Lung Cancer, vol. 56, no. 1, pp. 25–33, 2007.
[64]  C. F. MacManus, J. Pettigrew, A. Seaton et al., “Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells,” Molecular Cancer Research, vol. 5, no. 7, pp. 737–748, 2007.
[65]  R. M. Richardson, H. Ali, B. C. Pridgen, B. Haribabu, and R. Snyderman, “Multiple signaling pathways of human interleukin-8 receptor A: independent regulation by phosphorylation,” The Journal of Biological Chemistry, vol. 273, no. 17, pp. 10690–10695, 1998.
[66]  K. Inoue, J. W. Slaton, B. Y. Eve et al., “Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer,” Clinical Cancer Research, vol. 6, no. 5, pp. 2104–2119, 2000.
[67]  M. Karin and F. R. Greten, “NF-κB: linking inflammation and immunity to cancer development and progression,” Nature Reviews, vol. 5, no. 10, pp. 749–759, 2005.
[68]  P. M. F. Siesser and S. K. Hanks, “The signaling and biological implications of FAK overexpression in cancer,” Clinical Cancer Research, vol. 12, no. 11, part 1, pp. 3233–3237, 2006.
[69]  J. C. Acosta, A. O'Loghlen, A. Banito et al., “Chemokine signaling via the CXCR2 receptor reinforces senescence,” Cell, vol. 133, no. 6, pp. 1006–1018, 2008.
[70]  T. Kuilman, C. Michaloglou, L. C. W. Vredeveld et al., “Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network,” Cell, vol. 133, no. 6, pp. 1019–1031, 2008.
[71]  A. Vincent-Salomon and J. P. Thiery, “Host microenvironment in breast cancer development: epithelia-mesenchymal transition in breast cancer development,” Breast Cancer Research, vol. 5, no. 2, pp. 101–106, 2003.
[72]  B. B. McConnell and V. W. Yang, “The role of inflammation in the pathogenesis of colorectal cancer,” Current Colorectal Cancer Reports, vol. 5, no. 2, pp. 69–74, 2009.
[73]  A. J. Wilson, K. Byron, and P. R. Gibson, “Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro,” Clinical Science, vol. 97, no. 3, pp. 385–390, 1999.
[74]  X. J. Li, L. X. Peng, J. Y. Shao et al., “As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling,” Carcinogenesis, vol. 33, no. 7, pp. 1302–1309, 2012.
[75]  W. E. Holmes, J. Lee, W. J. Kuang, G. C. Rice, and W. I. Wood, “Structure and functional expression of a human interleukin-8 receptor. Science. 1991. 253: 1278-1280,” The Journal of Immunology, vol. 183, no. 5, pp. 2895–2897, 2009.
[76]  R. I. Fernando, M. D. Castillo, M. Litzinger, D. H. Hamilton, and C. Palena, “IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells,” Cancer Research, vol. 71, no. 15, pp. 5296–5306, 2011.
[77]  H. Iguchi, M. Ono, K. Matsushima, and M. Kuwano, “Overproduction of IL-8 results in suppression of bone metastasis by lung cancer cells in vivo,” International Journal of Oncology, vol. 17, no. 2, pp. 329–333, 2000.
[78]  N. Mukaida, “Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 284, no. 4, pp. L566–L577, 2003.
[79]  J.-P. Coppé, C. K. Patil, F. Rodier et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor,” PLoS Biology, vol. 6, no. 12, article e301, 2008.
[80]  A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001.
[81]  J. V. den Bossche, B. Malissen, A. Mantovani, P. de Baetselier, and J. A. van Ginderachter, “Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs,” Blood, vol. 119, no. 7, pp. 1623–1633, 2012.
[82]  A. Saalbach, C. Klein, J. Sleeman et al., “Dermal fibroblasts induce maturation of dendritic cells,” The Journal of Immunology, vol. 178, no. 8, pp. 4966–4974, 2007.
[83]  M. B. Lutz and G. Schuler, “Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?” Trends in Immunology, vol. 23, no. 9, pp. 445–449, 2002.
[84]  I. Tabas and C. K. Glass, “Anti-inflammatory therapy in chronic disease: challenges and opportunities,” Science, vol. 339, no. 6116, pp. 166–172, 2013.
[85]  T. T. Huang, S. M. Wuerzberger-Davis, B. J. Seufzer et al., “NF-κB activation by camptothecin. A linkage between nuclear dna damage and cytoplasmic signaling events,” The Journal of Biological Chemistry, vol. 275, no. 13, pp. 9501–9509, 2000.
[86]  A. V. Prasad, N. Mohan, B. Chandrasekar, and M. L. Meltz, “Activation of nuclear factor κB in human lymphoblastoid cells by low-dose ionizing radiation,” Radiation Research, vol. 138, no. 3, pp. 367–372, 1994.
[87]  H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999.
[88]  J. Huang, J. L. Yao, L. Zhang et al., “Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer,” The American Journal of Pathology, vol. 166, no. 6, pp. 1807–1815, 2005.
[89]  A. C. Bharti and B. B. Aggarwal, “Nuclear factor-κ B and cancer: its role in prevention and therapy,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 883–888, 2002.
[90]  A. Bellocq, M. Antoine, A. Flahault et al., “Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome,” The American Journal of Pathology, vol. 152, no. 1, pp. 83–92, 1998.
[91]  M. Haraguchi, K. Komuta, A. Akashi, S. Matsuzaki, J. Furui, and T. Kanematsu, “Elevated IL-8 levels in the drainage vein of resectable Dukes' C colorectal cancer indicate high risk for developing hepatic metastasis,” Oncology Reports, vol. 9, no. 1, pp. 159–165, 2002.
[92]  T. Kantola, K. Klintrup, J. P. V?yrynen, et al., “Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma,” British Journal of Cancer, vol. 107, no. 10, pp. 1729–1736, 2012.
[93]  H. Kuniyasu, W. Yasui, H. Shinohara et al., “Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer,” The American Journal of Pathology, vol. 157, no. 5, pp. 1523–1535, 2000.
[94]  S. L. McCarron, S. Edwards, P. R. Evans et al., “Influence of cytokine gene polymorphisms on the development of prostate cancer,” Cancer Research, vol. 62, no. 12, pp. 3369–3372, 2002.
[95]  T. S. Collins, L.-F. Lee, and J. P.-Y. Ting, “Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-κB- and AP-1-dependent mechanism,” Cancer Immunology, Immunotherapy, vol. 49, no. 2, pp. 78–84, 2000.
[96]  C. Wilson, P. J. Maxwell, D. B. Longley, R. H. Wilson, P. G. Johnston, and D. J. J. Waugh, “Constitutive and treatment-induced CXCL8-signalling selectively modulates the efficacy of anti-metabolite therapeutics in metastatic prostate cancer,” PLoS ONE, vol. 7, no. 5, Article ID e36545, 2012.
[97]  F. Biasi, T. Guina, M. Maina et al., “Progressive increase of matrix metalloprotease-9 and interleukin-8 serum levels during carcinogenic process in human colorectal tract,” PLoS ONE, vol. 7, no. 7, Article ID e41839, 2012.
[98]  S. Bünger, U. Haug, F. M. Kelly et al., “Toward standardized high-throughput serum diagnostics: multiplex-protein array identifies IL-8 and VEGF as serum markers for colon cancer,” Journal of Biomolecular Screening, vol. 16, no. 9, pp. 1018–1026, 2011.
[99]  V. I. F. Slettenaar and J. L. Wilson, “The chemokine network: a target in cancer biology?” Advanced Drug Delivery Reviews, vol. 58, no. 8, pp. 962–974, 2006.
[100]  K. L. Widdowson, J. D. Elliott, D. F. Veber et al., “Evaluation of potent and selective small-molecule antagonists for the CXCR2 chemokine receptor,” Journal of Medicinal Chemistry, vol. 47, no. 6, pp. 1319–1321, 2004.
[101]  M. L. Varney, S. Singh, A. Li, R. Mayer-Ezell, R. Bond, and R. K. Singh, “Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases,” Cancer Letters, vol. 300, no. 2, pp. 180–188, 2011.
[102]  S. Singh, A. Sadanandam, K. C. Nannuru et al., “Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis,” Clinical Cancer Research, vol. 15, no. 7, pp. 2380–2386, 2009.
[103]  J. Busch-Petersen, “Small molecule antagonists of the CXCR2 and CXCR1 chemokine receptors as therapeutic agents for the treatment of inflammatory diseases,” Current Topics in Medicinal Chemistry, vol. 6, no. 13, pp. 1345–1352, 2006.
[104]  Y. Ning, M. J. Labonte, W. Zhang, et al., “The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models,” Molecular Cancer Therapeutics, vol. 11, no. 6, pp. 1353–1364, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133