Objective. Evaluate the ecological relationship between skin melanoma epidemiology and latitude in Italy. Methods. We used data from the Italian network of cancer registries (Airtum). In a Poisson model, we evaluated the effect on incidence, mortality, and survival of latitude, adjusting for some demographic, social, phenotypic, and behavioural variables. Results. Incidence increased in Italy by 17% for each degree of increase in latitude. The effect of latitude was statistically significantly present also adjusting for other variables (incidence rate ratio = 1.08). The effect of latitude on increasing mortality (mortality rate ratio = 1.27) and improving survival (relative excess risk of death = 0.93) was no longer present in the multivariate model. Conclusion. Melanoma incidence, mortality, and survival vary in Italy according to latitude. After adjustment for several confounders, incidence still grows with growing latitude. Presumably, latitude expresses other variables that might be related to individual susceptibility and/or local care. 1. Introduction Although Italy is “the land where the lemon trees bloom,” as Goethe recited [1], the Italian climate changes dramatically from the cold Alpine regions in the North, to the subtropical areas in the South [2]. Italy stretches for about 1,000 kilometres from 47° to 35° latitude north, and the ultra violet (UV) irradiation varies accordingly with a north to south increasing trend [3]. Sun exposure is included among the major causes of skin melanoma (MM) [4] although its role is still controversial [5]. The UV affects skin causing genetic changes and immune function impairment; it also stimulates the production of growth factors and the formation of free radicals [6]. Phenotype traits significantly influenced the risk of melanoma [7]. The incidence of MM in white populations generally increases when latitude decreases, with the highest recorded incidence occurring in Australia, where the annual rates are 10–20 times the rates in Europe [8]. In New Zealand, MM incidence and mortality rates increased with increasing proximity to the equator in both sexes [9]. A Norwegian study described a latitude gradient for MM with decreasing incidence with increasing latitude [9, 10]; the same result was found in Sweden, for both general population [11] and children [12], and in Australia [13]. MM incidence increased at lower latitude [14] also among non-Hispanic whites in the USA. Studies in Spain [15], in Sweden [16], and in Australia and New Zeeland [17] document a link between latitude and MM mortality. In the USA,
References
[1]
J. W. Goethe, “Italienische reise,” 1829.
[2]
M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the K?ppen-Geiger climate classification,” Hydrology and Earth System Sciences Discussions, vol. 4, no. 2, pp. 439–473, 2007.
S. W. Menzies, “Is sun exposure a major cause of melanoma? Yes,” British Medical Journal, vol. 337, p. a763, 2008.
[5]
S. Shuster, “Is sun exposure a major cause of melanoma? No,” British Medical Journal, vol. 337, p. a764, 2008.
[6]
A. J. Miller and M. C. Mihm Jr., “Mechanisms of disease. Melanoma,” The New England Journal of Medicine, vol. 355, pp. 51–65, 2006.
[7]
S. Gandini, F. Sera, M. S. Cattaruzza et al., “Meta-analysis of risk factors for cutaneous melanoma—III. Family history, actinic damage and phenotypic factors,” European Journal of Cancer, vol. 41, no. 14, pp. 2040–2059, 2005.
[8]
World Health Organization, “Global solar UV index. An educational tool to reduce risks of skin cancer and cataract,” Fact Sheet 271, 2002.
[9]
J. Moan, A. C. Porojnicu, and A. Dahlback, “Ultraviolet radiation and malignant melanoma,” Advances in Experimental Medicine and Biology, vol. 624, pp. 104–116, 2008.
[10]
E. Cicarma, A. Juzeniene, A. C. Porojnicu, ?. S. Bruland, and J. Moan, “Latitude gradient for melanoma incidence by anatomic site and gender in Norway 1966-2007,” Journal of Photochemistry and Photobiology B, vol. 101, no. 2, pp. 174–178, 2010.
[11]
G. Eklund and E. Malec, “Sunlight and incidence of cutaneous malignant melanoma: effect of latitude and domicile in Sweden,” Cancer Causes Control, vol. 19, pp. 671–679, 2008.
[12]
Y. Rodvall, C. F. Wahlgren, H. Ullén, and K. Wiklund, “Common melanocytic nevi in 7-year-old schoolchildren residing at different latitudes in Sweden,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 1, pp. 122–127, 2007.
[13]
P. Baade, X. Meng, D. Youlden, J. Aitken, and P. Youl, “Time trends and latitudinal differences in melanoma thickness distribution in Australia, 1990–2006,” International Journal of Cancer, vol. 130, no. 1, pp. 170–178, 2012.
[14]
M. J. Eide and M. A. Weinstock, “Association of UV index, latitude, and melanoma incidence in nonwhite populations—US Surveillance, Epidemiology, and End Results (SEER) program, 1992 to 2001,” Archives of Dermatology, vol. 141, no. 4, pp. 477–481, 2005.
[15]
W. B. Grant, “An ecologic study of cancer mortality rates in Spain with respect to indices of solar UVB irradiance and smoking,” International Journal of Cancer, vol. 120, no. 5, pp. 1123–1128, 2007.
[16]
B. Lindeg?rd, “Mortality and fatality of cutaneous malignant melanoma in Sweden, 1982–1986,” Biomedicine and Pharmacotherapy, vol. 44, no. 10, pp. 495–501, 1990.
[17]
J. Moan, A. C. Porojnicu, A. Dahlback, and R. B. Setlow, “Addressing the health benefits and risks, involving vitamin D or skin cancer, of increased sun exposure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 668–673, 2008.
[18]
J. A. H. Lee, “Declining effect of latitude on melanoma mortality rates in the United States: a preliminary study,” American Journal of Epidemiology, vol. 146, no. 5, pp. 413–417, 1997.
[19]
A. C. Porojnicu, A. Dahlback, and J. Moan, “Sun exposure and cancer survival in Norway: changes in the risk of death with season of diagnosis and latitude,” Advances in Experimental Medicine and Biology, vol. 624, pp. 43–54, 2008.
[20]
AIRT Working Group, “Italian cancer figures—report 2006. Incidence, mortality and estimates,” Epidemiologia & Prevenzione, vol. 30, no. 1, supplement 2, pp. 8–10, 2006.
[21]
AIRTUM Working Group, “Italian cancer figures—report 2007. Survival,” Epidemiologia & Prevenzione, supplement 1, 2006.
[22]
AIRTUM Working Group, “Italian cancer figures, report 2009: cancer trend (1998–2005),” Epidemiologia & Prevenzione, vol. 33, no. 4-5, pp. 1–168, 2009.
[23]
Camera di Commercio Cuneo, “Rapporto sull’economia provinciale. Capitolo 18 Prodotto interno lordo e reddito pro capite,” pp. 355–357, 2003, http://www.cn.camcom.it/Page/t07/view_html?idp=1155.
[24]
R. Biasutti, “Razze e popoli della Terra,” UTET, 1941.
[25]
P. W. Dickman, A. Sloggett, M. Hills, and T. Hakulinen, “Regression models for relative survival,” Statistics in Medicine, vol. 23, no. 1, pp. 51–64, 2004.
[26]
J. L. Bulliard, “Site-specific risk of cutaneous malignant melanoma and pattern of sun exposure in New Zealand,” International Journal of Cancer, vol. 85, no. 5, pp. 627–632, 2000.
[27]
Y. M. Chang, J. H. Barrett, T. D. Bishop et al., “Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls,” International Journal of Epidemiology, vol. 38, no. 3, pp. 814–830, 2009.
[28]
C. A. Clarke, L. M. Moy, S. M. Swetter, J. Zadnick, and M. G. Cockburn, “Interaction of area-level socioeconomic status and UV radiation on melanoma occurrence in California,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 11, pp. 2727–2733, 2010.
[29]
E. Crocetti, A. Caldarella, A. Chiarugi, P. Nardini, and M. Zappa, “The thickness of melanomas has decreased in central Italy, but only for thin melanomas, while thick melanomas are as thick as in the past,” Melanoma Research, vol. 20, no. 5, pp. 422–426, 2010.
[30]
H. G. Welch, S. Woloshin, and L. M. Schwartz, “Skin biopsy rates and incidence of melanoma: population based ecological study,” British Medical Journal, vol. 331, no. 7515, pp. 481–484, 2005.