Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mammary epithelial cells and their malignant counterparts. 1. Introduction The extracellular matrix (ECM)—composed of numerous insoluble proteins secreted locally by epithelial and stromal cells—provides physical support to organize neighboring cells within a tissue and serves as a reservoir of growth factors. In the mammary gland, ECM interactions can control epithelial cell proliferation, survival, migration, and differentiation to regulate processes such as branching morphogenesis, polarization of mammary ducts and the alveolar outgrowth, and involution that occurs with pregnancy [1]. However, the matrix, which constitutes one component of the diverse tumor microenvironment, changes dramatically during the process of breast tumorigenesis and can strongly affect disease progression [2]. Therefore, the ECM can exert a strong influence on both normal and tumor cells. In either case, cells sense and respond to the ECM by way of transmembrane integrin receptors, which recognize and bind to various ECM proteins and thereby facilitate cell adhesion and intracellular signaling. Integrins function as a heterodimer, consisting of one α subunit and one β subunit that associate noncovalently. Mammals have 24 distinct integrin receptors, formed from a total of 18 α subunits and 8 β subunits [3]. Integrins couple recognition of ECM ligands to the assembly of the actin cytoskeleton and the activation of various intracellular kinases [4]. Here, we review recent studies that have deepened our understanding of the dynamics and coordination of integrin signaling and of the role that these signals play in mammary epithelial cells and their malignant counterparts. 2. Integrins in Normal Mammary Epithelial Cells With a disease as diverse as breast cancer—in its histology, genetic lesions, proliferation, response to treatment, and propensity to metastasize—it is crucial to examine how the cell type that is initially transformed impacts the tumor that is subsequently formed, a concept which emphasizes the cell of origin for a particular cancer [5]. In this regard, new developments in the
References
[1]
J. Muschler and C. H. Streuli, “Cell-matrix interactions in mammary gland development and breast cancer,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 10, p. a003202, 2010.
[2]
M. J. Bissell and D. Radisky, “Putting tumours in context,” Nature Reviews Cancer, vol. 1, no. 1, pp. 46–54, 2001.
[3]
R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002.
[4]
F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999.
[5]
J. E. Visvader, “Cells of origin in cancer,” Nature, vol. 469, no. 7330, pp. 314–322, 2011.
[6]
C. M. Nelson and M. J. Bissell, “Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 287–309, 2006.
[7]
I. Taddei, M. M. Faraldo, J. Teulière, M. A. Deugnier, J. P. Thiery, and M. A. Glukhova, “Integrins in mammary gland development and differentiation of mammary epithelium,” Journal of Mammary Gland Biology and Neoplasia, vol. 8, no. 4, pp. 383–394, 2003.
[8]
M. A. Schwartz and R. K. Assoian, “Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways,” Journal of Cell Science, vol. 114, no. 14, pp. 2553–2560, 2001.
[9]
S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997.
[10]
L. M. Shaw, “Integrin function in breast carcinoma progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 4, no. 4, pp. 367–376, 1999.
[11]
M. L. Asselin-Labat, K. D. Sutherland, H. Barker et al., “Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation,” Nature Cell Biology, vol. 9, no. 2, pp. 201–209, 2007.
[12]
S. M. Pontier and W. J. Muller, “Integrins in mammary-stem-cell biology and breast-cancer progression—a role in cancer stem cells?” Journal of Cell Science, vol. 122, no. 2, pp. 207–214, 2009.
[13]
E. C. Kordon and G. H. Smith, “An entire functional mammary gland may comprise the progeny from a single cell,” Development, vol. 125, no. 10, pp. 1921–1930, 1998.
[14]
M. Shackleton, F. Vaillant, K. J. Simpson et al., “Generation of a functional mammary gland from a single stem cell,” Nature, vol. 439, no. 7072, pp. 84–88, 2006.
[15]
J. Stingl, P. Eirew, I. Ricketson et al., “Purification and unique properties of mammary epithelial stem cells,” Nature, vol. 439, no. 7079, pp. 993–997, 2006.
[16]
E. Lim, F. Vaillant, D. Wu et al., “Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers,” Nature Medicine, vol. 15, no. 8, pp. 907–913, 2009.
[17]
J. T. Yang, H. Rayburn, and R. O. Hynes, “Embryonic mesodermal defects in α 5 integrin-deficient mice,” Development, vol. 119, no. 4, pp. 1093–1105, 1993.
[18]
B. L. Bader, H. Rayburn, D. Crowley, and R. O. Hynes, “Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins,” Cell, vol. 95, no. 4, pp. 507–519, 1998.
[19]
H. Gardner, J. Kreidberg, V. Koteliansky, and R. Jaenisch, “Deletion of integrin α 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion,” Developmental Biology, vol. 175, no. 2, pp. 301–313, 1996.
[20]
J. A. Kreidberg, M. J. Donovan, S. L. Goldstein et al., “α 3 β 1 integrin has a crucial role in kidney and lung organogenesis,” Development, vol. 122, no. 11, pp. 3537–3547, 1996.
[21]
E. Georges-Labouesse, N. Messaddeq, G. Yehia, L. Cadalbert, A. Dierich, and M. le Meur, “Absence of integrin α 6 leads to epidermolysis bullosa and neonatal death in mice,” Nature Genetics, vol. 13, no. 3, pp. 370–373, 1996.
[22]
J. Chen, T. G. Diacovo, D. G. Grenache, S. A. Santoro, and M. M. Zutter, “The α 2 integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis,” American Journal of Pathology, vol. 161, no. 1, pp. 337–344, 2002.
[23]
L. E. Stephens, A. E. Sutherland, I. V. Klimanskaya et al., “Deletion of β 1 integrins in mice results in inner cell mass failure and peri-implantation lethality,” Genes and Development, vol. 9, no. 15, pp. 1883–1895, 1995.
[24]
K. M. Hodivala-Dilke, K. P. McHugh, D. A. Tsakiris et al., “β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival,” Journal of Clinical Investigation, vol. 103, no. 2, pp. 229–238, 1999.
[25]
J. Dowling, Q. C. Yu, and E. Fuchs, “β4 Integrin is required for hemidesmosome formation, cell adhesion and cell survival,” Journal of Cell Biology, vol. 134, no. 2, pp. 559–572, 1996.
[26]
T. C. Klinowska, J. V. Soriano, G. M. Edwards et al., “Laminin and β 1 integrins are crucial for normal mammary gland development in the mouse,” Developmental Biology, vol. 215, no. 1, pp. 13–32, 1999.
[27]
M. M. Faraldo, M. A. Deugnier, M. Lukashev, J. P. Thiery, and M. A. Glukhova, “Perturbation of β1-integrin function alters the development of murine mammary gland,” The EMBO Journal, vol. 17, no. 8, pp. 2139–2147, 1998.
[28]
T. C. M. Klinowska, C. M. Alexander, E. Georges-Labouesse et al., “Epithelial development and differentiation in the mammary gland is not dependent on α 3 or α 6 integrin subunits,” Developmental Biology, vol. 233, no. 2, pp. 449–467, 2001.
[29]
D. E. White, N. A. Kurpios, D. Zuo et al., “Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction,” Cancer Cell, vol. 6, no. 2, pp. 159–170, 2004.
[30]
N. Li, Y. Zhang, M. J. Naylor et al., “β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli,” The EMBO Journal, vol. 24, no. 11, pp. 1942–1953, 2005.
[31]
M. J. Naylor, N. Li, J. Cheung et al., “Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation,” Journal of Cell Biology, vol. 171, no. 4, pp. 717–728, 2005.
[32]
I. Taddei, M. A. Deugnier, M. M. Faraldo et al., “β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells,” Nature Cell Biology, vol. 10, no. 6, pp. 716–722, 2008.
[33]
S. N. Nikolopoulos, P. Blaikie, T. Yoshioka, W. Guo, and F. G. Giancotti, “Integrin β4 signaling promotes tumor angiogenesis,” Cancer Cell, vol. 6, no. 5, pp. 471–483, 2004.
[34]
C. K. Miranti and J. S. Brugge, “Sensing the environment: a historical perspective on integrin signal transduction,” Nature Cell Biology, vol. 4, no. 4, pp. E83–E90, 2002.
[35]
S. Cabodi, M. Camacho-Leal, P. di Stefano, and P. Defilippi, “Integrin signalling adaptors: not only figurants in the cancer story,” Nature Reviews Cancer, vol. 10, no. 12, pp. 858–870, 2010.
[36]
S. Miyamoto, H. Teramoto, J. S. Gutkind, and K. M. Yamada, “Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors,” Journal of Cell Biology, vol. 135, no. 6, part 1, pp. 1633–1642, 1996.
[37]
Y. H. Soung, J. L. Clifford, and J. Chung, “Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression,” BMB Reports, vol. 43, no. 5, pp. 311–318, 2010.
[38]
R. Falcioni, A. Antonini, P. Nisticò et al., “α 6 β 4 and α 6 β 1 integrins associate with ErbB-2 in human carcinoma cell lines,” Experimental Cell Research, vol. 236, no. 1, pp. 76–85, 1997.
[39]
L. Moro, M. Venturino, C. Bozzo et al., “Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival,” The EMBO Journal, vol. 17, no. 22, pp. 6622–6632, 1998.
[40]
S. De, O. Razorenova, N. P. McCabe, T. O'Toole, J. Qin, and T. V. Byzova, “VEGF-Integrin interplay controls tumor growth and vascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7589–7594, 2005.
[41]
S. O. Yoon, S. Shin, and E. A. Lipscomb, “A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the α6β4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling,” Cancer Research, vol. 66, no. 5, pp. 2732–2739, 2006.
[42]
N. Boudreau and M. J. Bissell, “Extracellular matrix signaling: integration of form and function in normal and malignant cells,” Current Opinion in Cell Biology, vol. 10, no. 5, pp. 640–646, 1998.
[43]
K. E. Kadler, A. Hill, and E. G. Canty-Laird, “Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators,” Current Opinion in Cell Biology, vol. 20, no. 5, pp. 495–501, 2008.
[44]
R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009.
[45]
L. C. Plantefaber and R. O. Hynes, “Changes in integrin receptors on oncogenically transformed cells,” Cell, vol. 56, no. 2, pp. 281–290, 1989.
[46]
M. Pignatelli, M. R. Cardillo, A. Hanby, and G. W. H. Stamp, “Integrins and their accessory adhesion molecules in mammary carcinomas: loss of polarization in poorly differentiated tumors,” Human Pathology, vol. 23, no. 10, pp. 1159–1166, 1992.
[47]
C. M. Perou, T. S?rile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000.
[48]
G. Molyneux, F. C. Geyer, F. A. Magnay et al., “BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells,” Cell Stem Cell, vol. 7, no. 3, pp. 403–417, 2010.
[49]
T. A. Proia, P. J. Keller, P. B. Gupta et al., “Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate,” Cell Stem Cell, vol. 8, no. 2, pp. 149–163, 2011.
[50]
K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof, “High expression level of α 6 integrin in human breast carcinoma is correlated with reduced survival,” Cancer Research, vol. 55, no. 4, pp. 901–906, 1995.
[51]
L. K. Diaz, M. Cristofanilli, X. Zhou et al., “β4 Integrin subunit gene expression correlates with tumor size and nuclear grade in early breast cancer,” Modern Pathology, vol. 18, no. 9, pp. 1165–1175, 2005.
[52]
T. Meyer, J. F. Marshall, and I. R. Hart, “Expression of αv integrins and vitronectin receptor identity in breast cancer cells,” British Journal of Cancer, vol. 77, no. 4, pp. 530–536, 1998.
[53]
M. M. Zutter, S. A. Santoro, W. D. Staatz, and Y. L. Tsung, “Re-expression of the α 2 β 1 integrin abrogates the malignant phenotype of breast carcinoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7411–7415, 1995.
[54]
N. Ichaso and S. M. Dilworth, “Cell transformation by the middle T-antigen of polyoma virus,” Oncogene, vol. 20, no. 54, pp. 7908–7916, 2001.
[55]
M. Oktay, K. K. Wary, M. Dans, R. B. Birge, and F. G. Giancotti, “Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle,” Journal of Cell Biology, vol. 145, no. 7, pp. 1461–1469, 1999.
[56]
W. Guo, Y. Pylayeva, A. Pepe et al., “β 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis,” Cell, vol. 126, no. 3, pp. 489–502, 2006.
[57]
H. Lahlou, V. Sanguin-Gendreau, D. Zuo et al., “Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20302–20307, 2007.
[58]
R. Marcotte, H. W. Smith, V. Sanguin-Gendreau, R. V. McDonough, and W. J. Muller, “Breast cancer special feature: mammary epithelial-specific disruption of c-Src impairs cell cycle progression and tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America. In press.
[59]
M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003.
[60]
M. Shackleton, E. Quintana, E. R. Fearon, and S. J. Morrison, “Heterogeneity in cancer: cancer stem cells versus clonal evolution,” Cell, vol. 138, no. 5, pp. 822–829, 2009.
[61]
S. P. McDermott and M. S. Wicha, “Targeting breast cancer stem cells,” Molecular Oncology, vol. 4, no. 5, pp. 404–419, 2010.
[62]
F. Vaillant, M. L. Asselin-Labat, M. Shackleton, N. C. Forrest, G. J. Lindeman, and J. E. Visvader, “The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis,” Cancer Research, vol. 68, no. 19, pp. 7711–7717, 2008.
[63]
M. Luo, H. Fan, T. Nagy et al., “Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells,” Cancer Research, vol. 69, no. 2, pp. 466–474, 2009.
[64]
J. L. Guan, “Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer,” IUBMB Life, vol. 62, no. 4, pp. 268–276, 2010.
[65]
W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004.
[66]
I. J. Fidler, “The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited,” Nature Reviews Cancer, vol. 3, no. 6, pp. 453–458, 2003.
[67]
M. J. Bissell and W. C. Hines, “Why don't we get more cancer? a proposed role of the microenvironment in restraining cancer progression,” Nature Medicine, vol. 17, no. 3, pp. 320–329, 2011.
[68]
D. J. Webb, J. T. Parsons, and A. F. Horwitz, “Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again,” Nature Cell Biology, vol. 4, no. 4, pp. E97–E100, 2002.
[69]
P. J. Keely, J. K. Westwick, I. P. Whitehead, C. J. Der, and L. V. Parise, “Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K,” Nature, vol. 390, no. 6660, pp. 632–636, 1997.
[70]
D. J. Sieg, C. R. Hauck, D. Ilic et al., “FAK integrates growth-factor and integrin signals to promote cell migration,” Nature Cell Biology, vol. 2, no. 5, pp. 249–256, 2000.
[71]
J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009.
[72]
J. Massague, “TGFβ in Cancer,” Cell, vol. 134, no. 2, pp. 215–230, 2008.
[73]
A. J. Galliher and W. P. Schiemann, “β3 Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells,” Breast Cancer Research, vol. 8, no. 4, article R42, 2006.
[74]
E. S. Radisky and D. C. Radisky, “Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 201–212, 2010.
[75]
P. C. Brooks, S. Str?mblad, L. C. Sanders et al., “Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ 3,” Cell, vol. 85, no. 5, pp. 683–693, 1996.
[76]
O. Baum, R. Hlushchuk, A. Forster et al., “Increased invasive potential and up-regulation of MMP-2 in MDA-MB-231 breast cancer cells expressing the β 3 integrin subunit,” International Journal of Oncology, vol. 30, no. 2, pp. 325–332, 2007.
[77]
D. E. White and W. J. Muller, “Multifaceted roles of integrins in breast cancer metastasis,” Journal of Mammary Gland Biology and Neoplasia, vol. 12, no. 2-3, pp. 135–142, 2007.
[78]
H. Liapis, A. Flath, and S. Kitazawa, “Integrin α V β 3 expression by bone-residing breast cancer metastases,” Diagnostic Molecular Pathology B, vol. 5, no. 2, pp. 127–135, 1996.
[79]
M. M. Zutter, G. Mazoujian, and S. A. Santoro, “Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast,” The American journal of pathology, vol. 137, no. 4, pp. 863–870, 1990.
[80]
B. Felding-Habermann, T. E. O'Toole, J. W. Smith et al., “Integrin activation controls metastasis in human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1853–1858, 2001.
[81]
J. S. Desgrosellier, L. A. Barnes, D. J. Shields et al., “An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression,” Nature Medicine, vol. 15, no. 10, pp. 1163–1169, 2009.
[82]
P. A. Muller, P. T. Caswell, B. Doyle et al., “Mutant p53 drives invasion by promoting integrin recycling,” Cell, vol. 139, no. 7, pp. 1327–1341, 2009.
[83]
J. Zhang, X. Liu, A. Datta et al., “RCP is a human breast cancer-promoting gene with Ras-activating function,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2171–2183, 2009.
[84]
S. Mehrotra, “IAP regulation of metastasis,” Cancer Cell, vol. 17, no. 1, pp. 53–64, 2010.
[85]
S. M. Srinivasula and J. D. Ashwell, “IAPs: what's in a name?” Molecular Cell, vol. 30, no. 2, pp. 123–135, 2008.
[86]
N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” The Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011.
[87]
C. J. Avraamides, B. Garmy-Susini, and J. A. Varner, “Integrins in angiogenesis and lymphangiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 604–617, 2008.
[88]
J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010.
[89]
C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011.