Objectives. Assessment of gemcitabine/carboplatin combination in patients with advanced-stage hepatocellular carcinoma (HCC) in a phase II trial for safety and efficacy. Methods. Forty patients with previously untreated advanced-stage HCC were prospectively enrolled and subjected to gemcitabine/carboplatin regimen which consisted of gemcitabine 1000?mg/m2 on days 1 and 8, and carboplatin AUC 6 on day 1. The treatment was repeated every 3 weeks until disease progression or limiting toxicity. Results. Forty patients were assessable for efficacy and toxicity. In all, 276 treatment cycles were administered. No toxic deaths occurred. Hematological grade 3-4 toxicity consisted of thrombocytopenia (27% of patients) and neutropenia (24%), including 2 febrile neutropenia and anemia (9%). Grade 3 carboplatin-induced neurotoxicity was observed in 3 (9%) patients. ORR was 23% (95% CI, 0.10–0.29) with 9 partial responses and disease stabilization was observed in 46% (95% CI, 0.22–0.42) of patients, giving a disease control rate of 69%. Median progression-free and overall survival times were, respectively, 5 months (95% CI: 3–8 months) and 8 months (95% CI: 6–18 months). Conclusion. The gemcitabine/carboplatin regimen seems to be effective, well tolerated, and active in advanced HCC. 1. Introduction Hepatocellular carcinoma is the fifth most common cancer in men and eighth in women worldwide, resulting in at least 500,000 deaths per year [1]. Over a decade, there was nearly a twofold increase of the proportion of HCC among CLD patients in Egypt with a significant decline of HBV and slight increase of HCV as risk factors. Alpha-fetoprotein played a limited role in diagnosis of HCC, compared to imaging techniques [2]. Diagnosis is usually made by history, physical examination, imaging (US, CT, MRI), and elevated serum AFP > 400?ng/mL with 75% of hepatocellular carcinoma is multifocal at time of diagnosis. In most patients with HCC, we are dealing with two independent diseases, each determines the patient outcome. Treatment plan should consider the disease extent, hepatic functional reserve, and patient’s performance status [3]. Liver resection is the first curative option with 3?yr survival of 54% in the noncirrhotic liver after R0 resection. Transplantation comes next in patients fulfilling Milan criteria, or the expanded UCSF criteria, with 3?yr survival of up to 88%. Ablative modalities such as TACE, RFA, and others are accepted alternatives either as palliation, or bridging before liver transplant. For HCC patients with extrahepatic extent or extensive disease not
References
[1]
W. A. Anwar, H. M. Khaled, H. A. Amra, H. El-Nezami, and C. A. Loffredo, “Changing pattern of hepatocellular carcinoma (HCC) and its risk factors in Egypt: possibilities for prevention,” Mutation Research, vol. 659, no. 1-2, pp. 176–184, 2008.
[2]
A. R. El-Zayadi, H. M. Badran, E. M. F. Barakat et al., “Hepatocellular carcinoma in Egypt: a single center study over a decade,” World Journal of Gastroenterology, vol. 11, no. 33, pp. 5193–5198, 2005.
[3]
S. Jelic and G. C. Sotiropoulos, “Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 21, supplement 5, pp. v59–v64, 2010.
[4]
J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008.
[5]
J. Edeline, J. L. Raoul, E. Vauleon, A. Guillygomac'h, K. Boudjema, and E. Boucher, “Systemic chemotherapy for hepatocellular carcinoma in non-cirrhotic liver: a retrospective study,” World Journal of Gastroenterology, vol. 15, no. 6, pp. 713–716, 2009.
[6]
K. T. Chan and M. L. Lung, “Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line,” Cancer Chemotherapy and Pharmacology, vol. 53, no. 6, pp. 519–526, 2004.
[7]
T. Endo, M. Yoshikawa, M. Ebara et al., “Immunohistochemical metallothionein expression in hepatocellular carcinoma: relation to tumor progression and chemoresistance to platinum agents,” Journal of Gastroenterology, vol. 39, no. 12, pp. 1196–1201, 2004.
[8]
T. R. Fleming, “One-sample multiple testing procedure for phase II clinical trials.,” Biometrics, vol. 38, no. 1, pp. 143–151, 1982.
[9]
S. J. Kim, H. Y. Seo, J. G. Choi et al., “Phase II study with a combination of epirubicin, cisplatin, UFT, and leucovorin in advanced hepatocellular carcinoma,” Cancer Chemotherapy and Pharmacology, vol. 57, no. 4, pp. 436–442, 2006.
[10]
W. Yeo, T. S. Mok, B. Zee et al., “A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma,” Journal of the National Cancer Institute, vol. 97, no. 20, pp. 1532–1538, 2005.
[11]
S. H. Park, Y. Lee, S. H. Han et al., “Systemic chemotherapy with doxorubicin, cisplatin and capecitabine for metastatic hepatocellular carcinoma,” BMC Cancer, vol. 6, article no. 3, 2006.
[12]
V. Boige, J. L. Raoul, J. P. Pignon et al., “Multicentre phase II trial of capecitabine plus oxaliplatin (XELOX) in patients with advanced hepatocellular carcinoma: FFCD 03-03 trial,” British Journal of Cancer, vol. 97, no. 7, pp. 862–867, 2007.
[13]
G. Lombardi, F. Zustovich, F. Farinati et al., “Pegylated liposomal doxorubicin and gemcitabine in patients with advanced hepatocellular carcinoma: results of a phase 2 study,” Cancer, vol. 117, no. 1, pp. 125–133, 2011.
[14]
A. Asnacios, L. Fartoux, O. Romano et al., “Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study,” Cancer, vol. 112, no. 12, pp. 2733–2739, 2008.