Microsatellite instability (MSI) is a unique molecular abnormality, indicative of a deficient DNA mismatch repair (MMR) system. Described and characterized in the colorectal cancer literature, the MSI-positive phenotype is predictive of disease susceptibility, pathogenesis, and prognosis. The clinical relevance of MSI in colorectal cancer has inspired similar inquisition within the sarcoma literature, although unfortunately, with very heterogeneous results. Evolving detection techniques, ill-defined sarcoma-specific microsatellite loci and small study numbers have hampered succinct conclusions. The literature does suggest that MSI in sarcoma is observed at a frequency similar to that of sporadic colorectal cancers, although there is little evidence to suggest that MSI-positive tumors share distinct biological attributes. Emerging evidence in Ewing sarcoma has demonstrated an intriguing mechanistic role of microsatellite DNA in the activation of key EWS/FLI-target genes. These findings provide an alternative perspective to the biological implications of microsatellite instability in sarcoma and warrant further investigation using sophisticated detection techniques, sensitive microsatellite loci, and appropriately powered study designs. 1. The Essence of Microsatellite DNA The biological precedence of tandem nucleotide repeats scattered throughout the human genome has intrigued scientific inquiry since these genetic elements were first characterized in the early 1980s. More precisely, the term microsatellite DNA refers to tandem iterations of simple sequence motifs dispersed throughout the genome. The majority of microsatellite DNA is comprised of mono-, di-, tri- and tetra-nucleotide repeats, and these repetitive elements constitute ~3% of the human genome [1]. Current estimates suggest that there are approximately one million microsatellite loci within the human genome, and the vast majority of these sequences are situated within noncoding regions such as intronic and intergenic segments. Consequently, microsatellite DNA has been long regarded as “junk DNA” with a poorly understood biological function. The repetitive nature of microsatellite DNA renders it more susceptible to mutagenesis during DNA replication and furthermore, the lack of evolutionary pressure on these noncoding regions has licensed an impressive rate of microsatellite polymorphisms in the human population overtime. Compared to coding regions of the genome, microsatellite loci are genetically diverse, characterized by high heterozygosity indices and numerous alleles for any given loci
References
[1]
E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.
[2]
H. Ellegren, “Microsatellites: simple sequences with complex evolution,” Nature Reviews Genetics, vol. 5, no. 6, pp. 435–445, 2004.
[3]
C. M. Hearne, S. Ghosh, and J. A. Todd, “Microsatellites for linkage analysis of genetic traits,” Trends in Genetics, vol. 8, no. 8, pp. 288–294, 1992.
[4]
P. Hackman, G. Gabbani, A. M. Osterholm, D. Hellgren, and B. Lambert, “Spontaneous length variation in microsatellite DNA from human T-cell clones,” Genes Chromosomes and Cancer, vol. 14, no. 3, pp. 215–219, 1995.
[5]
G. Levinson and G. A. Gutman, “High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12,” Nucleic Acids Research, vol. 15, no. 13, pp. 5323–5338, 1987.
[6]
K. A. Eckert and S. E. Hile, “Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome,” Molecular Carcinogenesis, vol. 48, no. 4, pp. 379–388, 2009.
[7]
M. J. Schofield and P. Hsieh, “DNA Mismatch repair: molecular mechanisms and biological function,” Annual Review of Microbiology, vol. 57, pp. 579–608, 2003.
[8]
S. N. Thibodeau, G. Bren, and D. Schaid, “Microsatellite instability in cancer of the proximal colon,” Science, vol. 260, no. 5109, pp. 816–819, 1993.
[9]
Y. Ionov, M. A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho, “Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis,” Nature, vol. 363, no. 6429, pp. 558–561, 1993.
[10]
L. A. Aaltonen, P. Peltomaki, F. S. Leach et al., “Clues to the pathogenesis of familial colorectal cancer,” Science, vol. 260, no. 5109, pp. 812–816, 1993.
[11]
P. Peltomaki, R. A. Lothe, L. A. Aaltonen et al., “Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome,” Cancer Research, vol. 53, no. 24, pp. 5853–5855, 1993.
[12]
F. M. Giardiello, J. D. Brensinger, and G. M. Petersen, “AGA technical review on hereditary colorectal cancer and genetic testing,” Gastroenterology, vol. 121, no. 1, pp. 198–213, 2001.
[13]
S. Chen, W. Wang, S. Lee et al., “Prediction of germline mutations and cancer risk in the lynch syndrome,” Journal of the American Medical Association, vol. 296, no. 12, pp. 1479–1487, 2006.
[14]
E. Stoffel, B. Mukherjee, V. M. Raymond et al., “Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome,” Gastroenterology, vol. 137, no. 5, pp. 1621–1627, 2009.
[15]
V. Pi?ol, A. Castells, M. Andreu et al., “Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer,” Journal of the American Medical Association, vol. 293, no. 16, pp. 1986–1994, 2005.
[16]
J. G. Herman, A. Umar, K. Polyak et al., “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6870–6875, 1998.
[17]
S. Popat, R. Hubner, and R. S. Houlston, “Systematic review of microsatellite instability and colorectal cancer prognosis,” Journal of Clinical Oncology, vol. 23, no. 3, pp. 609–618, 2005.
[18]
C. R. Boland, S. N. Thibodeau, S. R. Hamilton et al., “A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer,” Cancer Research, vol. 58, no. 22, pp. 5248–5257, 1998.
[19]
A. Umar, C. R. Boland, J. P. Terdiman et al., “Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability,” Journal of the National Cancer Institute, vol. 96, no. 4, pp. 261–268, 2004.
[20]
C. R. Boland and A. Goel, “Microsatellite instability in colorectal cancer,” Gastroenterology, vol. 138, no. 6, pp. 2073–2087, 2010.
[21]
G. Des Guetz, O. Schischmanoff, P. Nicolas, G. Y. Perret, J. F. Morere, and B. Uzzan, “Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis,” European Journal of Cancer, vol. 45, no. 10, pp. 1890–1896, 2009.
[22]
C. Guastadisegni, M. Colafranceschi, L. Ottini, and E. Dogliotti, “Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data,” European Journal of Cancer, vol. 46, no. 15, pp. 2788–2798, 2010.
[23]
S. M. Woerner, M. Kloor, M. von Knebel Doeberitz, and J. F. Gebert, “Microsatellite instability in the development of DNA mismatch repair deficient tumors,” Cancer Biomarkers. Section A, vol. 2, no. 1-2, pp. 69–86, 2006.
[24]
Y. Ejima, L. Yang, and M. S. Sasaki, “Aberrant splicing of the ATM gene associated with shortening of the intronic mononucleotide tract in human colon tumor cell lines: a novel mutation target of microsatellite instability,” International Journal of Cancer, vol. 86, no. 2, pp. 262–268, 2000.
[25]
B. Zhu and N. Kyprianou, “Transforming growth factor beta and prostate cancer,” Cancer treatment and research, vol. 126, pp. 157–173, 2005.
[26]
K. B. Hahm, K. Cho, C. Lee et al., “Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein,” Nature Genetics, vol. 23, no. 2, pp. 222–227, 1999.
[27]
S. Mateo-Lozano, O. M. Tirado, and V. Notario, “Rapamycin induces the fusion-type independent downregulation of the EWS/FLI-1 proteins and inhibits Ewing's sarcoma cell proliferation,” Oncogene, vol. 22, no. 58, pp. 9282–9287, 2003.
[28]
T. Miyashita and J. C. Reed, “Tumor suppressor p53 is a direct transcriptional activator of the human bax gene,” Cell, vol. 80, no. 2, pp. 293–299, 1995.
[29]
T. Tsuchiya, K. I. Sekine, S. I. Hinohara, T. Namiki, T. Nobori, and Y. Kaneko, “Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma,” Cancer Genetics and Cytogenetics, vol. 120, no. 2, pp. 91–98, 2000.
[30]
S. L. Lessnick, C. S. Dacwag, and T. R. Golub, “The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts,” Cancer Cell, vol. 1, no. 4, pp. 393–401, 2002.
[31]
N. Gonin-Laurent, N. S. Hadj-Hamou, N. Vogt et al., “RB1 and TP53 pathways in radiation-induced sarcomas,” Oncogene, vol. 26, no. 41, pp. 6106–6112, 2007.
[32]
A. Duval and R. Hamelin, “Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability,” Cancer Research, vol. 62, no. 9, pp. 2447–2454, 2002.
[33]
E. L. McKinsey, J. K. Parrish, A. E. Irwin et al., “A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs,” Oncogene, vol. 30, pp. 4910–4920, 2011.
[34]
M. Pacheco and T. O. Nielsen, “Histone deacetylase 1 and 2 in mesenchymal tumors,” Modern Pathology, vol. 25, no. 2, pp. 222–230, 2012.
[35]
W. K. Rasheed, R. W. Johnstone, and H. M. Prince, “Histone deacetylase inhibitors in cancer therapy,” Expert Opinion on Investigational Drugs, vol. 16, no. 5, pp. 659–678, 2007.
[36]
K. Gangwal, S. Sankar, P. C. Hollenhorst et al., “Microsatellites as EWS/FLI response elements in Ewing's sarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10149–10154, 2008.
[37]
D. A. Belchis, C. A. Meece, F. A. Benko, P. K. Rogan, R. A. Williams, and C. D. Gocke, “Loss of heterozygosity and microsatellite instability at the retinoblastoma locus in osteosarcomas,” Diagnostic Molecular Pathology, vol. 5, no. 3, pp. 214–219, 1996.
[38]
S. S. Martin, W. G. Hurt, L. K. Hedges, M. G. Butler, and H. S. Schwartz, “Microsatellite instability in sarcomas,” Annals of Surgical Oncology, vol. 5, no. 4, pp. 356–360, 1998.
[39]
L. Klingler, J. Shooks, P. N. Fiedler, A. Marney, M. G. Butler, and H. S. Schwartz, “Microsatellite instability in sacral chordoma,” Journal of Surgical Oncology, vol. 73, no. 2, pp. 100–103, 2000.
[40]
A. Ohali, S. Avigad, I. J. Cohen et al., “High frequency of genomic instability in Ewing family of tumors,” Cancer Genetics and Cytogenetics, vol. 150, no. 1, pp. 50–56, 2004.
[41]
M. Rucińska, L. Koz?owski, W. Pepiński, M. Skawrońska, J. Janica, and M. Z. Wejtokiewicz, “High grade sarcomas are associated with microsatellite instability (chromosom 12) and loss of heterozygosity (chromosom 2),” Medical Science Monitor, vol. 11, no. 2, pp. BR65–BR68, 2005.
[42]
R. Wooster, A. M. Cleton-Jansen, N. Collins et al., “Instability of short tandem repeats (microsatellites) in human cancers,” Nature Genetics, vol. 6, no. 2, pp. 152–156, 1994.
[43]
M. Tarkkanen, L. A. Aaltonen, T. B?hling et al., “No evidence of microsatellite instability in bone tumours,” British Journal of Cancer, vol. 74, no. 3, pp. 453–455, 1996.
[44]
G. Aue, L. K. Hedges, H. S. Schwartz, J. A. Bridge, J. R. Neff, and M. G. Butler, “Clear cell sarcoma or malignant melanoma of soft parts: molecular analysis of microsatellite instability with clinical correlation,” Cancer Genetics and Cytogenetics, vol. 105, no. 1, pp. 24–28, 1998.
[45]
N. Entz-Werle, A. Schneider, C. Kalifa et al., “Genetic alterations in primary osteosarcoma from 54 children and adolescents by targeted allelotyping,” British Journal of Cancer, vol. 88, no. 12, pp. 1925–1931, 2003.
[46]
M. Ebinger, T. Bock, R. Kandolf, K. Sotlar, B. D. Bültmann, and J. Greil, “Standard mono- and dinucleotide repeats do not appear to be sensitive markers of microsatellite instability in the Ewing family of tumors,” Cancer Genetics and Cytogenetics, vol. 157, no. 2, pp. 189–190, 2005.
[47]
N. Entz-Werlé, L. Marcellin, M. P. Gaub et al., “Prognostic significance of allelic imbalance at the c-kit gene locus and c-kit overexpression by immunohistochemistry in pediatric osteosarcomas,” Journal of Clinical Oncology, vol. 23, no. 10, pp. 2248–2255, 2005.
[48]
J. J. Garcia, M. J. Kramer, R. J. O'Donnell, and A. E. Horvai, “Mismatch repair protein expression and microsatellite instability: a comparison of clear cell sarcoma of soft parts and metastatic melanoma,” Modern Pathology, vol. 19, no. 7, pp. 950–957, 2006.
[49]
I. Alldinger, K. L. Schaefer, D. Goedde et al., “Microsatellite instability in Ewing tumor is not associated with loss of mismatch repair protein expression,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 10, pp. 749–759, 2007.
[50]
S. Oda, E. Oki, Y. Maehara, and K. Sugimachi, “Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis,” Nucleic Acids Research, vol. 25, no. 17, pp. 3415–3420, 1997.
[51]
D. Shinde, Y. Lai, F. Sun, and N. Arnheim, “Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites,” Nucleic Acids Research, vol. 31, no. 3, pp. 974–980, 2003.
[52]
F. Ginot, I. Bordelais, S. Nguyen, and G. Gyapay, “Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs,” Nucleic Acids Research, vol. 24, no. 3, pp. 540–541, 1996.
[53]
A. H. Reitmair, M. Redston, J. C. Cai et al., “Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice,” Cancer Research, vol. 56, no. 16, pp. 3842–3849, 1996.
[54]
A. H. Reitmair, J. C. Cai, M. Bjerknes et al., “MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis,” Cancer Research, vol. 56, no. 13, pp. 2922–2926, 1996.
[55]
D. Figeys, A. Renborg, and N. J. Dovichi, “Labeling of double-stranded DNA by ROX-dideoxycytosine triphosphate using terminal deoxynucleotidyl transferase and separation by capillary electrophoresis,” Analytical Chemistry, vol. 66, no. 23, pp. 4382–4383, 1994.
[56]
K. I. Kawaguchi, Y. Oda, T. Takahira et al., “Microsatellite instability and hMLH1 and hMSH2 expression analysis in soft tissue sarcomas,” Oncology Reports, vol. 13, no. 2, pp. 241–246, 2005.
[57]
E. Vilar and S. B. Gruber, “Microsatellite instability in colorectal cancer-the stable evidence,” Nature Reviews. Clinical Oncology, vol. 7, no. 3, pp. 153–162, 2010.
[58]
Y. Maehara, S. Oda, and K. Sugimachi, “The instability within: problems in current analyses of microsatellite instability,” Mutation Research, vol. 461, no. 4, pp. 249–263, 2001.
[59]
N. Guillon, F. Tirode, V. Boeva, A. Zynovyev, E. Barillot, and O. Delattre, “The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function,” PLoS One, vol. 4, no. 3, Article ID e4932, 2009.
[60]
O. Delattre, J. Zucman, T. Melot et al., “The Ewing family of tumors—A subgroup of small-round-cell tumors defined by specific chimeric transcripts,” New England Journal of Medicine, vol. 331, no. 5, pp. 294–299, 1994.
[61]
R. Smith, L. A. Owen, D. J. Trem et al., “Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma,” Cancer Cell, vol. 9, no. 5, pp. 405–416, 2006.
[62]
M. Kinsey, R. Smith, and S. L. Lessnick, “NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma,” Molecular Cancer Research, vol. 4, no. 11, pp. 851–859, 2006.
[63]
O. M. Tirado, S. Mateo-Lozano, J. Villar et al., “Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells,” Cancer Research, vol. 66, no. 20, pp. 9937–9947, 2006.
[64]
W. Luo, K. Gangwal, S. Sankar, K. M. Boucher, D. Thomas, and S. L. Lessnick, “GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing's sarcoma oncogenesis and therapeutic resistance,” Oncogene, vol. 28, no. 46, pp. 4126–4132, 2009.
[65]
E. García-Aragoncillo, J. Carrillo, E. Lalli et al., “DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells,” Oncogene, vol. 27, no. 46, pp. 6034–6043, 2008.