The identification of a fraction of cancer stem cells (CSCs) associated with resistance to chemotherapy in most solid tumors leads to the dogma that eliminating this fraction will cure cancer. Experimental data has challenged this simplistic and optimistic model. Opposite to the classical cancer stem cell model, we introduced the stemness phenotype model (SPM), which proposed that all glioma cells possess stem cell properties and that the stemness is modulated by the microenvironment. A key prediction of the SPM is that to cure gliomas all gliomas cells (CSCs and non-CSCs) should be eliminated at once. Other theories closely resembling the SPM and its predictions have recently been proposed, suggesting that the SPM may be a useful model for other type of tumors. Here, we review data from other tumors that strongly support the concepts of the SPM applied to gliomas. We include data related to: (1) the presence of a rare but constant fraction of CSCs in established cancer cell lines, (2) the clonal origin of cancer, (3) the symmetrical division, (4) the ability of “non-CSCs” to generate “CSCs,” and (5) the effect of the microenvironment on cancer stemness. The aforenamed issues that decisively supported the SPM proposed for gliomas can also be applied to breast, lung, prostate cancer, and melanoma and perhaps other tumors in general. If the glioma SPM is correct and can be extrapolated to other types of cancer, it will have profound implications in the development of novel modalities for cancer treatment. 1. Introduction The identification of putative cancer stem cells (CSCs) in tumors some years ago gave rise to new concepts in cancer biology, and consequently new dogmas in the cancer field were established. The classical cancer stem cells model (CSM) proposes that all cancer types have a subpopulation of cancer stem cell responsible for resistance to chemo- and/or radiotherapy, concluding that eliminating this subpopulation of CSCs will cure cancer [1–5]. However, there is no consensus among experimental data regarding key issues that are important for the establishment of effective treatments. For instance, the percentage of cancer stem cells detected in glioma cell lines tumors varies from less than 1% to 100% (for review see [6]). The differences have also been observed in other types of cancer (see below). However, these discrepancies, which might be well due to differences in methodology and criteria used to detect and characterize these cells have important clinical consequences. If the percentage of CSCs is rare (<1%), the elimination (if
References
[1]
N. Y. Frank, T. Schatton, and M. H. Frank, “The therapeutic promise of the cancer stem cell concept,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 41–50, 2010.
[2]
J. Gil, A. Stembalska, K. A. Pesz, and M. M. Sasiadek, “Cancer stem cells: the theory and perspectives in cancer therapy,” Journal of Applied Genetics, vol. 49, no. 2, pp. 193–199, 2008.
[3]
S. Soltanian and M. M. Matin, “Cancer stem cells and cancer therapy.,” Tumour Biology, vol. 32, no. 3, pp. 425–440, 2011.
[4]
S. Srivastava and S. Krishna, “Cancer stem cells: an approach to identify newer therapeutic targets,” Journal of Stem Cells, vol. 4, no. 2, pp. 123–131, 2009.
[5]
M. S. Wicha, S. Liu, and G. Dontu, “Cancer stem cells: an old idea—a paradigm shift,” Cancer Research, vol. 66, no. 4, pp. 1883–1890, 2006.
[6]
C. Mabel, S. ?ke, T. D. Ruth, and Y. J. Sebastian, “Are all glioma cells cancer stem cells?” Journal of Cancer Science and Therapy, vol. 2, no. 4, pp. 100–106, 2010.
[7]
M. Ropolo, A. Daga, F. Griffero et al., “Comparative analysis of DNA repair in stem and nonstem glioma cell cultures,” Molecular Cancer Research, vol. 7, no. 3, pp. 383–392, 2009.
[8]
A. L. Vescovi, R. Galli, and B. A. Reynolds, “Brain tumour stem cells,” Nature Reviews Cancer, vol. 6, no. 6, pp. 425–436, 2006.
[9]
M. A. Hatiboglu, J. Wei, A. S. G. Wu, and A. B. Heimberger, “Immune therapeutic targeting of glioma cancer stem cells,” Targeted Oncology, vol. 5, no. 3, pp. 217–227, 2010.
[10]
J. Dong and Q. Huang, “Targeting glioma stem cells: enough to terminate gliomagenesis?” Chinese Medical Journal, vol. 124, no. 17, pp. 2756–2763, 2011.
[11]
M. Mannino and A. J. Chalmers, “Radioresistance of glioma stem cells: intrinsic characteristic or property of the 'microenvironment-stem cell unit'?” Molecular Oncology, vol. 5, no. 4, pp. 374–386, 2011.
[12]
M. Jamal, B. H. Rath, P. S. Tsang, K. Camphausen, and P. J. Tofilon, “The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells,” Neoplasia, vol. 14, no. 2, pp. 150–158, 2012.
[13]
S. J. Zhang, F. Ye, R. F. Xie et al., “Comparative study on the stem cell phenotypes of C6 cells under different culture conditions,” Chinese Medical Journal, vol. 124, no. 19, pp. 3118–3126, 2011.
[14]
L. Liu, W.-Y. Li, Q. Chen, J.-K. Zheng, and L.-Y. Yang, “The biological characteristics of glioma stem cells in human glioma cell line SHG44,” Molecular Medicine Reports, vol. 5, no. 2, pp. 552–558, 2012.
[15]
Y. Li and J. Laterra, “Cancer stem cells: distinct entities or dynamically regulated phenotypes?” Cancer Research, vol. 72, no. 3, pp. 576–580, 2012.
[16]
M. Christgen, M. Ballmaier, H. Bruchhardt, R. Wasielewski, H. Kreipe, and U. Lehmann, “Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line,” Molecular and Cellular Biochemistry, vol. 306, no. 1-2, pp. 201–212, 2007.
[17]
M. Cariati, A. Naderi, J. P. Brown et al., “Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line,” International Journal of Cancer, vol. 122, no. 2, pp. 298–304, 2008.
[18]
J. B. Kim, E. Ko, W. Han, I. Shin, S. Y. Park, and D. Y. Non, “Berberine diminishes the side population and ABCG2 transporter expression in MCF-7 breast cancer cells,” Planta Medica, vol. 74, no. 14, pp. 1693–1700, 2008.
[19]
C. Oliveras-Ferraros, A. Vazquez-Martin, and J. A. Menendez, “Pharmacological mimicking of caloric restriction elicits epigenetic reprogramming of differentiated cells to stem-like self-renewal states,” Rejuvenation Research, vol. 13, no. 5, pp. 519–526, 2010.
[20]
T. M. Phillips, W. H. McBride, and F. Pajonk, “The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation,” Journal of the National Cancer Institute, vol. 98, no. 24, pp. 1777–1785, 2006.
[21]
F. Karimi-Busheri, A. Rasouli-Nia, J. R. Mackey, and M. Weinfeld, “Senescence evasion by MCF-7 human breast tumor-initiating cells,” Breast Cancer Research, vol. 12, no. 3, article no. R31, 2010.
[22]
Y. Zhang, B. Piao, Y. Zhang et al., “Oxymatrine diminishes the side population and inhibits the expression of β-catenin in MCF-7 breast cancer cells,” Medical Oncology, vol. 28, Supplement 1, pp. 99–107, 2011.
[23]
M. Nakatsugawa, A. Takahashi, Y. Hirohashi et al., “SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity,” Laboratory Investigation, vol. 91, no. 12, pp. 1796–1804, 2011.
[24]
X. Meng, M. Li, X. Wang, Y. Wang, and D. Ma, “Both CD133+ and CD133- subpopulations of A549 and H446 cells contain cancer-initiating cells,” Cancer Science, vol. 100, no. 6, pp. 1040–1046, 2009.
[25]
X. Meng, X. Wang, and Y. Wang, “More than 45% of A549 and H446 cells are cancer initiating cells: evidence from cloning and tumorigenic analyses,” Oncology Reports, vol. 21, no. 4, pp. 995–1000, 2009.
[26]
J. M. Sung, H. J. Cho, H. Yi et al., “Characterization of a stem cell population in lung cancer A549 cells,” Biochemical and Biophysical Research Communications, vol. 371, no. 1, pp. 163–167, 2008.
[27]
M. M. Ho, A. V. Ng, S. Lam, and J. Y. Hung, “Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4827–4833, 2007.
[28]
C. D. Salcido, A. Larochelle, B. J. Taylor, C. E. Dunbar, and L. Varticovski, “Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer,” British Journal of Cancer, vol. 102, no. 11, pp. 1636–1644, 2010.
[29]
B. Wang, H. Yang, Y. Z. Huang, R. H. Yan, F. J. Liu, and J. N. Zhang, “Biologic characteristics of the side population of human small cell lung cancer cell line H446,” Chinese Journal of Cancer, vol. 29, no. 3, pp. 254–260, 2010.
[30]
J. Feng, Q. Qi, A. Khanna et al., “Aldehyde dehydrogenase 1 is a tumor stem cell-Associated marker in lung cancer,” Molecular Cancer Research, vol. 7, no. 3, pp. 330–338, 2009.
[31]
Y. C. Chen, H. S. Hsu, Y. W. Chen et al., “Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells,” PLoS One, vol. 3, no. 7, Article ID e2637, 2008.
[32]
G. Bertolini, L. Roz, P. Perego et al., “Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16281–16286, 2009.
[33]
G. D. Richardson, C. N. Robson, S. H. Lang, D. E. Neal, N. J. Maitland, and A. T. Collins, “CD133, a novel marker for human prostatic epithelial stem cells,” Journal of Cell Science, vol. 117, no. 16, pp. 3539–3545, 2004.
[34]
E. M. Hurt, B. T. Kawasaki, G. J. Klarmann, S. B. Thomas, and W. L. Farrar, “CD44+CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis,” British Journal of Cancer, vol. 98, no. 4, pp. 756–765, 2008.
[35]
L. Patrawala, T. Calhoun, R. Schneider-Broussard et al., “Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells,” Oncogene, vol. 25, no. 12, pp. 1696–1708, 2006.
[36]
A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005.
[37]
R. A. Rowehl, H. Crawford, A. Dufour, J. Ju, and G. I. Botchkina, “Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line,” Cancer Genomics and Proteomics, vol. 5, no. 6, pp. 301–310, 2008.
[38]
L. Ricci-Vitiani, E. Fabrizi, E. Palio, and R. De Maria, “Colon cancer stem cells,” Journal of Molecular Medicine, vol. 87, no. 11, pp. 1097–1104, 2009.
[39]
Y. Shen and D. Cao, “Hepatocellular carcinoma stem cells: origins and roles in hepatocarcinogenesis and disease progression,” Frontiers in Bioscience, vol. 4, pp. 1157–1169, 2012.
[40]
Z. Wang, A. Ahmad, Y. Li, A. S. Azmi, L. Miele, and F. H. Sarkar, “Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy,” Anticancer Research, vol. 31, no. 4, pp. 1105–1113, 2011.
[41]
R. Lin, “Thyroid cancer stem cells,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 609–616, 2011.
[42]
M. N. Tran, J. G. Goodwin, D. J. McConkey, and A. M. Kamat, “Bladder cancer stem cells,” Current Stem Cell Research and Therapy, vol. 5, no. 4, pp. 387–395, 2010.
[43]
J. Lopez, A. Poitevin, V. Mendoza-Martinez, C. Perez-Plasencia, and A. Garcia-Carranca, “Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance,” BMC Cancer, vol. 12, no. 1, article 48, 2012.
[44]
C. Aguilar-Gallardo, E. C. Rutledge, A. M. Martínez-Arroyo, J. J. Hidalgo, S. Domingo, and C. Simón, “Overcoming challenges of ovarian cancer stem cells: novel therapeutic approaches,” Stem Cell Reviews and Reports. In press.
[45]
I. Dimov, M. Visnjic, and V. Stefanovic, “Urothelial cancer stem cells,” TheScientificWorldJOURNAL, vol. 10, pp. 1400–1415, 2010.
[46]
C. Grange, M. Tapparo, F. Collino et al., “Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche,” Cancer Research, vol. 71, no. 15, pp. 5346–5356, 2011.
[47]
E. Aydemir, O. F. Bayrak, F. Sahin et al., “Characterization of cancer stem-like cells in chordoma,” Journal of Neurosurgery, vol. 116, no. 4, pp. 810–820, 2012.
[48]
T. Kondo, T. Setoguchi, and T. Taga, “Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 781–786, 2004.
[49]
M. Lieber, B. Smith, and A. Szakal, “A continuous tumor cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” International Journal of Cancer, vol. 17, no. 1, pp. 62–70, 1976.
[50]
S. Lyle and N. Moore, “Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance,” Journal of Oncology, vol. 2011, Article ID 396076, 11 pages, 2011.
[51]
J. Bubeník, M. Baresová, V. Viklicky, J. Jakoubková, H. Sainerová, and J. Donner, “Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen,” International Journal of Cancer, vol. 11, no. 3, pp. 765–773, 1973.
[52]
Z. F. Ning, Y. J. Huang, T. X. Lin et al., “Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24,” Journal of International Medical Research, vol. 37, no. 3, pp. 621–630, 2009.
[53]
B. P. Lucey, W. A. Nelson-Rees, and G. M. Hutchins, “Henrietta Lacks, HeLa cells, and cell culture contamination,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 9, pp. 1463–1467, 2009.
[54]
W. Gu, E. Yeo, N. McMillan, and C. Yu, “Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability,” Cancer Gene Therapy, vol. 18, no. 12, pp. 897–905, 2011.
[55]
M. Resnicoff, E. E. Medrano, O. L. Podhajcer, A. I. Bravo, L. Bover, and J. Mordoh, “Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 20, pp. 7295–7299, 1987.
[56]
M. G. Brattain, W. D. Fine, and F. M. Khaled, “Heterogeneity of malignant cells from a human colonic carcinoma,” Cancer Research, vol. 41, no. 5, pp. 1751–1756, 1981.
[57]
J. M. Grichnik, J. A. Burch, R. D. Schulteis et al., “Melanoma, a tumor based on a mutant stem cell?” Journal of Investigative Dermatology, vol. 126, no. 1, pp. 142–153, 2006.
[58]
A. Roesch, M. Fukunaga-Kalabis, E. C. Schmidt et al., “A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth,” Cell, vol. 141, no. 4, pp. 583–594, 2010.
[59]
J. H. Ware, Z. Zhou, J. Guan, A. R. Kennedy, and L. Kopelovich, “Establishment of human cancer cell clones with different characteristics: a model for screening chemopreventive agents,” Anticancer Research, vol. 27, no. 1 A, pp. 1–16, 2007.
[60]
L. J. Kleinsmith and Pierce, “Multipotentiality of single embryonal carcinoma cells,” Cancer Research, vol. 24, pp. 1544–1551, 1964.
[61]
M. A. S. Moore, H. Ekert, M. G. Fitzgerald, and A. Carmichael, “Evidence for the clonal origin of chronic myeloid leukemia from a sex chromosome mosaic: clinical, cytogenetic, and marrow culture studies,” Blood, vol. 43, no. 1, pp. 15–22, 1974.
[62]
P. Benda, J. Lightbody, G. Sato, L. Levine, and W. Sweet, “Differentiated rat glial cell strain in tissue culture,” Science, vol. 161, no. 3839, pp. 370–371, 1968.
[63]
H. D. Soule, J. Vazquez, and A. Long, “A human cell line from a pleural effusion derived from a breast carcinoma,” Journal of the National Cancer Institute, vol. 51, no. 5, pp. 1409–1416, 1973.
[64]
F. Colombo, F. Baldan, S. Mazzucchelli et al., “Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma,” PLoS ONE, vol. 6, no. 6, Article ID e21369, 2011.
[65]
J. Dou, M. Pan, P. Wen et al., “Isolation and identification of cancer stem-like cells from murine melanoma cell lines.,” Cellular & Molecular Immunology, vol. 4, no. 6, pp. 467–472, 2007.
[66]
E. Monzani, F. Facchetti, E. Galmozzi et al., “Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential,” European Journal of Cancer, vol. 43, no. 5, pp. 935–946, 2007.
[67]
T. Schatton, G. F. Murphy, N. Y. Frank et al., “Identification of cells initiating human melanomas,” Nature, vol. 451, no. 7176, pp. 345–349, 2008.
[68]
Y. R. Na, S. H. Seok, D. J. Kim et al., “Isolation and characterization of spheroid cells from human malignant melanoma cell line WM-266-4,” Tumor Biology, vol. 30, no. 5-6, pp. 300–309, 2009.
[69]
P. F. Ledur, E. S. Villodre, R. Paulus, L. A. Cruz, D. G. Flores, and G. Lenz, “Extracellular ATP reduces tumor sphere growth and cancer stem cell population in glioblastoma cells,” Purinergic Signal, vol. 8, no. 1, pp. 39–48, 2011.
[70]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel et al., “Ketones and lactate increase cancer cell "stemness", driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics,” Cell Cycle, vol. 10, no. 8, pp. 1271–1286, 2011.
[71]
K. Bartkowiak, S. Riethdorf, and K. Pantel, “The interrelating dynamics of hypoxic tumor microenvironments and cancer cell phenotypes in cancer metastasis,” Cancer Microenvironment, vol. 5, no. 1, pp. 59–72, 2011.
[72]
J. M. Heddleston, Z. Li, R. E. McLendon, A. B. Hjelmeland, and J. N. Rich, “The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype,” Cell Cycle, vol. 8, no. 20, pp. 3274–3284, 2009.
[73]
Z. Li and J. N. Rich, “Hypoxia and hypoxia inducible factors in cancer stem cell maintenance.,” Current Topics in Microbiology and Immunology, vol. 345, pp. 21–30, 2010.
[74]
J. Mathieu, Z. Zhang, W. Zhou et al., “HIF induces human embryonic stem cell markers in cancer cells,” Cancer Research, vol. 71, no. 13, pp. 4640–4652, 2011.
[75]
L. Vermeulen, F. De Sousa E Melo, M. Van Der Heijden et al., “Wnt activity defines colon cancer stem cells and is regulated by the microenvironment,” Nature Cell Biology, vol. 12, no. 5, pp. 468–476, 2010.
[76]
B. Beck, G. Driessens, S. Goossens et al., “A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours,” Nature, vol. 478, no. 7369, pp. 399–403, 2011.
[77]
P. Hamerlik, J. D. Lathia, R. Rasmussen et al., “Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth,” The Journal of Experimental Medicine, vol. 209, no. 3, pp. 507–520, 2012.
[78]
N. Charles, T. Ozawa, M. Squatrito et al., “Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells,” Cell Stem Cell, vol. 6, no. 2, pp. 141–152, 2010.
[79]
M. Ying, S. Wang, Y. Sang et al., “Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition,” Oncogene, vol. 30, no. 31, pp. 3454–3467, 2011.
[80]
M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009.
[81]
L. Salvatori, F. Caporuscio, A. Verdina et al., “Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors,” PLoS One, vol. 7, no. 2, Article ID e31467, 2012.
[82]
I. Szablowska-Gadomska, V. Zayat, and L. Buzanska, “Influence of low oxygen tensions on expression of pluripotency genes in stem cells,” Acta Neurobiologiae Experimentalis, vol. 71, no. 1, pp. 86–93, 2011.
[83]
C. E. Forristal, K. L. Wright, N. A. Hanley, R. O. C. Oreffo, and F. D. Houghton, “Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions,” Reproduction, vol. 139, no. 1, pp. 85–97, 2010.
[84]
D. R. Laks, K. Visnyei, and H. I. Kornblum, “Brain tumor stem cells as therapeutic targets in models of glioma,” Yonsei Medical Journal, vol. 51, no. 5, pp. 633–640, 2010.
[85]
L. Vermeulen, F. de Sousa E Melo, D. J. Richel, and J. P. Medema, “The developing cancer stem-cell model: clinical challenges and opportunities,” The Lancet Oncology, vol. 13, no. 2, pp. 83–89, 2012.
[86]
N. Navin, A. Krasnitz, L. Rodgers et al., “Inferring tumor progression from genomic heterogeneity,” Genome Research, vol. 20, no. 1, pp. 68–80, 2010.
[87]
W. Zhou, A. A. Muggerud, P. Vu et al., “Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution,” Molecular Oncology, vol. 3, no. 3, pp. 214–219, 2009.
[88]
N. Navin, J. Kendall, J. Troge et al., “Tumour evolution inferred by single-cell sequencing,” Nature, vol. 472, no. 7341, pp. 90–94, 2011.
[89]
J. D. Lathia, M. Hitomi, J. Gallagher et al., “Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions,” Cell Death and Disease, vol. 2, article e200, 2011.
[90]
S. Sugiarto, A. I. Persson, E. G. Munoz et al., “Asymmetry-defective oligodendrocyte progenitors are glioma precursors,” Cancer Cell, vol. 20, no. 3, pp. 328–340, 2011.
[91]
E. Quintana, M. Shackleton, H. R. Foster et al., “Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized,” Cancer Cell, vol. 18, no. 5, pp. 510–523, 2010.
[92]
D. Iliopoulos, H. A. Hirsch, G. Wang, and K. Struhl, “Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1397–1402, 2011.
[93]
P. B. Gupta, C. M. Fillmore, G. Jiang et al., “Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 146, no. 4, pp. 633–644, 2011.
[94]
P. B. Gupta, C. M. Fillmore, G. Jiang et al., “Erratum: stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 146, no. 6, p. 1042, 2011.
[95]
P. B. Gupta, C. M. Fillmore, G. Jiang et al., “Erratum: stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 147, no. 5, p. 1197, 2011.
[96]
X. Zheng, G. Shen, X. Yang, and W. Liu, “Most C6 cells are cancer stem cells: evidence from clonal and population analyses,” Cancer Research, vol. 67, no. 8, pp. 3691–3697, 2007.
[97]
X. Zheng, G. Shen, X. Yang, and W. Liu, “Erratum: most C6 cells are cancer stem cells: evidence from clonal and population analyses,” Cancer Research, vol. 67, no. 20, p. 10097, 2007.
[98]
E. Katz, K. Skorecki, and M. Tzukerman, “Niche-dependent tumorigenic capacity of malignant ovarian ascites-derived cancer ceil subpopulations,” Clinical Cancer Research, vol. 15, no. 1, pp. 70–80, 2009.
[99]
S. Abelson, Y. Shamai, L. Berger, R. Shouval, K. Skorecki, and M. Tzukerman, “Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer,” Stem Cells, vol. 30, no. 3, pp. 415–424, 2012.
[100]
M. Quante, G. Bhagat, J. A. Abrams et al., “Bile Acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia,” Cancer Cell, vol. 21, no. 1, pp. 36–51, 2012.
[101]
R. F. Souza, K. Krishnan, and S. J. Spechler, “Acid, Bile, and CDX: the ABCs of making Barrett's metaplasia,” American Journal of Physiology, Gastrointestinal and Liver Physiology, vol. 295, no. 2, pp. G211–G218, 2008.