Background. An important goal of personalized cancer therapy is to tailor specific therapies to the mutational profile of individual patients. However, whole genome sequencing studies have shown that the mutational profiles of cancers evolve over time and often differ between primary and metastatic sites. Activating point mutations in the PIK3CA gene are common in primary breast cancer tumors, but their presence in breast cancer bone metastases has not been assessed previously. Results. Fourteen patients with breast cancer bone metastases were biopsied by three methods: CT-guided bone biopsies; bone marrow trephine biopsies; and bone marrow aspiration. Samples that were positive for cancer cells were obtained from six patients. Three of these patients had detectable PIK3CA mutations in bone marrow cancer cells. Primary tumor samples were available for four of the six patients assessed for PIK3CA status in their bone metastases. For each of these, the PIK3CA mutation status was the same in the primary and metastatic sites. Conclusions. PIK3CA mutations occur frequently in breast cancer bone metastases. The PIK3CA mutation status in bone metastases samples appears to reflect the PIK3CA mutation status in the primary tumour. Breast cancer patients with bone metastases may be candidates for treatment with selective PIK3CA inhibitors. 1. Introduction An important goal of personalized cancer therapy is to tailor specific therapies to the mutational profile of the individual patient’s cancer. A major issue with this strategy is that while the aim of systemic therapy is to treat metastatic disease, typically the primary tumour is used as the source of information on the mutational profile of a patient’s cancer. There is clear evidence that tumours evolve over time. For example, Shah et al. used whole genome sequencing to compare the mutation profiles of the primary tumor and a metastatic tumor that occurred many years after the primary and showed that there were multiple additional mutations present in the metastasis [1]. In theory, these differences could arise as a consequence of selection pressures due to therapy or selection pressures for metastatic potential; alternatively, they may arise randomly due to heterogeneity in the primary tumour and/or the high mutation rate in cancer cells. A recent whole genome sequencing study of matched primary and metastatic tumors in pancreatic cancer indicates that both primary tumor heterogeneity and further acquired mutations contribute to differences in mutational profiles between primary and metastatic sites [2]. The
References
[1]
S. P. Shah, R. D. Morin, J. Khattra et al., “Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution,” Nature, vol. 461, no. 7265, pp. 809–813, 2009.
[2]
S. Yachida, S. Jones, I. Bozic et al., “Distant metastasis occurs late during the genetic evolution of pancreatic cancer,” Nature, vol. 467, no. 7319, pp. 1114–1117, 2010.
[3]
B. Karakas, K. E. Bachman, and B. H. Park, “Mutation of the PIK3CA oncogene in human cancers,” British Journal of Cancer, vol. 94, no. 4, pp. 455–459, 2006.
[4]
L. Zhao and P. K. Vogt, “Class I PI3K in oncogenic cellular transformation,” Oncogene, vol. 27, no. 41, pp. 5486–5496, 2008.
[5]
R. J. Crowder, C. Phommaly, Y. Tao et al., “PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer,” Cancer Research, vol. 69, no. 9, pp. 3955–3962, 2009.
[6]
A. G. Bader, S. Kang, and P. K. Vogt, “Cancer-specific mutations in PIK3CA are oncogenic in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1475–1479, 2006.
[7]
A. G. Bader, S. Kang, L. Zhao, and P. K. Vogt, “Oncogenic PI3K deregulates transcription and translation,” Nature Reviews Cancer, vol. 5, no. 12, pp. 921–929, 2005.
[8]
J. D. Jensen, A. V. Laenkholm, A. Knoop et al., “PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer,” Clinical Cancer Research, vol. 17, no. 4, pp. 667–677, 2011.
[9]
K. Kalinsky, A. Heguy, U. K. Bhanot, S. Patil, and M. E. Moynahan, “PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression,” Breast Cancer Research and Treatment, vol. 129, pp. 635–643, 2011.
[10]
A. M. Gonzalez-Angulo, J. Ferrer-Lozano, K. Stemke-Hale et al., “PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer,” Molecular Cancer Therapeutics, vol. 10, no. 6, pp. 1093–1101, 2011.
[11]
J. F. Hilton, E. Amir, S. Hopkins et al., “Acquisition of metastatic tissue from patients with bone metastases from breast cancer,” Breast Cancer Research and Treatment, vol. 129, no. 3, pp. 761–765, 2010.
[12]
F. B. Dean, S. Hosono, L. Fang et al., “Comprehensive human genome amplification using multiple displacement amplification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5261–5266, 2002.
[13]
K. Kalinsky, L. M. Jacks, A. Heguy et al., “PIK3CA mutation associates with improved outcome in breast cancer,” Clinical Cancer Research, vol. 15, no. 16, pp. 5049–5059, 2009.
[14]
E. Amir, N. Miller, W. Geddie, O. Freedman, F. Kassam, and C. Simmons, “Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer,” Journal of Clinical Oncology, vol. 30, no. 6, pp. 587–592, 2012.
[15]
V. Serra, B. Markman, M. Scaltriti et al., “NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations,” Cancer Research, vol. 68, no. 19, pp. 8022–8030, 2008.
[16]
E. Leung, J. E. Kim, G. W. Rewcastle, G. J. Finlay, and B. C. Baguley, “Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells,” Cancer Biology and Therapy, vol. 11, no. 11, pp. 938–946, 2011.
[17]
C. G. Sanchez, C. X. Ma, R. J. Crowder et al., “Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer,” Breast Cancer Research, vol. 13, no. 2, article R21, 2011.
[18]
A. Chakrabarty, V. Sanchez, M. G. Kuba, C. Rinehart, and C. L. Arteaga, “Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 8, pp. 2718–2723, 2012.