全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

DOI: 10.5402/2012/956190

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. 1. Introduction Approximately 20,000 reproductive-aged American women carry a diagnosis of leukemia [1]. For women less than 45 years old at the time of diagnosis, the 5-year survival rate is approximately 50% and 40% for women with AML and ALL. Cancer patients are not only focused on survival, but on quality of life and long-term plans, such as family building. Health care providers have recognized the importance of fertility to cancer patients and the impact of cancer treatment on fertility. The American Society of Clinical Oncology recommends that fertility preservation be discussed at the time of diagnosis [2, 3]. Chemotherapeutics have a range of gonadotoxic effects. In general, methotrexate, fluorouracil, vincristine, bleomycin, and dactinomycin are associated with a low or no risk of amenorrhea, which is used as a surrogate marker for infertility, while alkylating agents are more likely to cause ovarian damage and amenorrhea [2]. Alkylating agents, like cyclophosphamide, may lead to early menopause by damaging primordial follicles [4, 5]. Anthracyclines, used for induction remission and postremission chemotherapy in young adults with acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL), also likely lead to ovarian damage [6, 7]. Ovarian reserve refers to

References

[1]  N. Howlader, A. Noone, M. Krapcho, et al., “SEER Cancer Statistics Review, 1975–2008,” National Cancer Institute, Bethesda, Md, USA, 2012, http://seer.cancer.gov/csr/1975_2008/.
[2]  S. J. Lee, L. R. Schover, A. H. Partridge et al., “American Society of Clinical Oncology recommendations on fertility preservation in cancer patients,” Journal of Clinical Oncology, vol. 24, no. 18, pp. 2917–2931, 2006.
[3]  US Department of Health and Human Services, “Living Beyond Cancer: Finding a New Balance, President's Cancer Panel,” Tech. Rep., 2003-2004.
[4]  S. V. Nicosia, M. Matus-Ridley, and A. T. Meadows, “Gonadal effects of cancer therapy in girls,” Cancer, vol. 55, no. 10, pp. 2364–2372, 1985.
[5]  D. C. Linch, R. G. Gosden, T. Tulandi, S. L. Tan, and S. L. Hancock, “Hodgkin's lymphoma: choice of therapy and late complications,” American Society of Hematology Education Program, vol. 2000, pp. 205–221, 2000.
[6]  C. K. Welt, Pathogenesis and Causes of Spontaneous Premature Ovarian Failure, 2009.
[7]  R. M. Stone, M. R. O'Donnell, and M. A. Sekeres, “Acute myeloid leukemia,” Hematology, pp. 98–117, 2004.
[8]  K. L. Singh, M. Davies, and R. Chatterjee, “Fertility in female cancer survivors: pathophysiology, preservation and the role of ovarian reserve testing,” Human Reproduction Update, vol. 11, no. 1, pp. 69–89, 2005.
[9]  R. T. Scott, M. S. Opsahl, M. R. Leonardi, G. S. Neall, E. H. Illions, and D. Navot, “Life table analysis of pregnancy rates in a general infertility population relative to ovarian reserve and patient age,” Human Reproduction, vol. 10, no. 7, pp. 1706–1710, 1995.
[10]  R. D. Van Beek, M. M. Van Den Heuvel-Eibrink, J. S. E. Laven et al., “Anti-Müllerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's lymphoma during childhood,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 10, pp. 3869–3874, 2007.
[11]  W. F. Sample, B. M. Lippe, and M. T. Gyepes, “Gray-scale ultrasonography of the normal female pelvis,” Radiology, vol. 125, no. 2, pp. 477–483, 1977.
[12]  C. L. Cook, Y. Siow, S. Taylor, and M. E. Fallat, “Serum mullerian-inhibiting substance levels during normal menstrual cycles,” Fertility and Sterility, vol. 73, no. 4, pp. 859–861, 2000.
[13]  K. Behringer, K. Breuer, T. Reineke et al., “Secondary amenorrhea after Hodgkin's lymphoma is influenced by age at treatment, stage of disease, chemotherapy regimen, and the use of oral contraceptives during therapy: a report from the German Hodgkin's Lymphoma Study Group,” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7555–7564, 2005.
[14]  Z. Blumenfeld, E. Dann, I. Avivi, R. Epelbaum, and J. M. Rowe, “Fertility after treatment for Hodgkin's disease,” Annals of Oncology, vol. 13, supplement 1, pp. 138–47, 2002.
[15]  C. E. Kiserud, A. Foss?, H. Holte, and S. D. Foss?, “Post-treatment parenthood in Hodgkin's lymphoma survivors,” British Journal of Cancer, vol. 96, no. 9, pp. 1442–1449, 2007.
[16]  J. Aisner, P. H. Wiernik, and P. Pearl, “Pregnancy outcome in patients treated for Hodgkin's disease,” Journal of Clinical Oncology, vol. 11, no. 3, pp. 507–512, 1993.
[17]  Ethics Committee of the American Society for Reproductive Medicine, “Fertility preservation and reproduction in cancer patients,” Fertility and Sterility, vol. 83, no. 6, pp. 1622–1628, 2005.
[18]  H. Magelssen, K. K. Melve, R. Skj?rven, and S. D. Foss?, “Parenthood probability and pregnancy outcome in patients with a cancer diagnosis during adolescence and young adulthood,” Human Reproduction, vol. 23, no. 1, pp. 178–186, 2008.
[19]  L. M. S. Madanat, N. Malila, T. Dyba et al., “Probability of parenthood after early onset cancer: a population-based study,” International Journal of Cancer, vol. 123, no. 12, pp. 2891–2898, 2008.
[20]  D. M. Green, J. A. Whitton, M. Stovall et al., “Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study,” American Journal of Obstetrics and Gynecology, vol. 187, no. 4, pp. 1070–1080, 2002.
[21]  L. B. Signorello, S. S. Cohen, C. Bosetti et al., “Female survivors of childhood cancer: preterm birth and low birth weight among their children,” Journal of the National Cancer Institute, vol. 98, no. 20, pp. 1453–1461, 2006.
[22]  E. C. Larsen, J. Müller, C. Rechnitzer, K. Schmiegelow, and A. N. Andersen, “Diminished ovarian reserve in female childhood cancer survivors with regular menstrual cycles and basal FSH <10 IU/l,” Human Reproduction, vol. 18, no. 2, pp. 417–422, 2003.
[23]  W. J. K. Hehenkamp, C. W. N. Looman, A. P. N. Themmen, F. H. De Jong, E. R. Te Velde, and F. J. M. Broekmans, “Anti-Müllerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 10, pp. 4057–4063, 2006.
[24]  S. S. Kim, W. S. Lee, M. K. Chung, H. C. Lee, H. H. Lee, and D. Hill, “Long-term ovarian function and fertility after heterotopic autotransplantation of cryobanked human ovarian tissue: 8-year experience in cancer patients,” Fertility and Sterility, vol. 91, no. 6, pp. 2349–2354, 2009.
[25]  Practice Committee of American Society for Reproductive Medicine and Practice Committee of Society for Assisted Reproductive Technology, “Ovarian tissue and oocyte cryopreservation,” Fertility and Sterility, vol. 90, no. 5, supplement, pp. S241–S246, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133