全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Risk of Cancer Mortality in Spanish Towns Lying in the Vicinity of Pollutant Industries

DOI: 10.5402/2012/614198

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spatial aggregation of different industrial facilities leads to simultaneous release of pollutant emissions. Our objective is to study cancer mortality risk associated with residence in the vicinity of pollutant factories. We used data on industries for year 2007 (3458 facilities). For the 8,098 Spanish towns, we defined a factor with 4 levels based on the number of factories in a radius of 2.5?km from the centroid of each town (industrial factor). We also used data of land cover use to approximate the percentage of municipal land used for industrial activities in each Spanish town (land-used variable). For both variables we fitted Poisson models with random terms to account for spatial variation. We estimated risk trends related with increasing number of factories or percentage of land used for industrial activities. We studied 33 cancer causes. For the industrial factor, 11 causes showed trend associated with increasing factor level. For the land use variable, 8 causes showed statistically significant risks. Almost all tumours related to the digestive system and the respiratory system showed increased risks. Thus mortality by these tumours could be associated to residence in towns nearby industrial areas with positive trend linked to increasing levels of industrial activity. 1. Background Exposure to pollution as a cause of cancer has been frequently studied. Studies using in vitro assay systems and biomarkers have proved mutagenic activity in air samples from urban and industrialized areas [1]. Important sources of pollution are emissions from industrial activity. The International Agency for Research on Cancer (IARC) classifies as carcinogens substances and compounds present in air emissions from industrial facilities such as some heavy metals (cadmium, chromium, nickel and arsenic), Volatile Organic Compounds (VOC) benzene or asbestos [2]. Spatial aggregation of factories in industrial estates is a common practice due to legal regulations or economic reasons. This spatial aggregation leads to simultaneous release of pollutant emissions from different industrial facilities over the same area. Potential hazardous effects of those emissions are an important issue from the Public Health point of view and research has been done upto the present date focusing on different diseases and populations, such as cancer, heart disease, mutations in children [1, 3–5]. The availability of direct measures would be the ideal tool for these kinds of studies [6, 7], unluckily in many situations this is still not possible. A more common option is using the geographical

References

[1]  J. Samet and A. Cohen, “Air pollution,” in Cancer Epidemiology and Prevention, pp. 355–382, Oxford University Press, New York, NY, USA, 2006.
[2]  IARC, Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42, Monographs on the Evaluation of Carcinogenic Risks to Humans, supplement 7, IARC Press, Lyon, France, 1987.
[3]  L. M. Schell, K. K. Burnitz, and P. W. Lathrop, “Pollution and human biology,” Annals of Human Biology, vol. 37, no. 3, pp. 347–366, 2010.
[4]  L. Curtis, W. Rea, P. Smith-Willis, E. Fenyves, and Y. Pan, “Adverse health effects of outdoor air pollutants,” Environment International, vol. 32, no. 6, pp. 815–830, 2006.
[5]  J. Barclay, G. Hillis, and J. Ayres, “Air pollution and the heart cardiovascular effects and mechanisms,” Toxicological Reviews, vol. 24, no. 2, pp. 115–123, 2005.
[6]  D. Briggs, “Exposure assessment,” in Spatial Epidemiology: Methods and Applications, Oxford University Press, 2000.
[7]  M. Nieuwenhuijsen, D. Paustenbach, and R. Duarte-Davidson, “New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies,” Environment International, vol. 32, no. 8, pp. 996–1009, 2006.
[8]  A. J. De Roos, S. Davis, J. S. Colt et al., “Residential proximity to industrial facilities and risk of non-Hodgkin lymphoma,” Environmental Research, vol. 110, no. 1, pp. 70–78, 2010.
[9]  J.-F. Viel, C. Daniau, S. Goria et al., “Risk for non Hodgkin's lymphoma in the vicinity of French municipal solid waste incinerators,” Environmental Health, vol. 7, article 51, 2008.
[10]  S. Parodi, M. Vercelli, A. Stella, E. Stagnaro, and F. Valerio, “Lymphohaematopoietic system cancer incidence in an urban area near a coke oven plant: an ecological investigation,” Occupational and Environmental Medicine, vol. 60, no. 3, pp. 187–194, 2003.
[11]  S. Monge-Corella, J. García-Pérez, N. Aragonés, M. Pollán, B. Pérez-Gómez, and G. López-Abente, “Lung cancer mortality in towns near paper, pulp and board industries in Spain: a point source pollution study,” BMC Public Health, vol. 8, article 288, 2008.
[12]  J. García-Pérez, M. F. López-Cima, B. Pérez-Gómez et al., “Mortality due to tumours of the digestive system in towns lying in the vicinity of metal production and processing installations,” Science of the Total Environment, vol. 408, no. 16, pp. 3102–3112, 2010.
[13]  J. F. Viel, P. Arveux, J. Baverel, and J. Y. Cahn, “Soft-tissue sarcoma and non-Hodgkin's lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels,” American Journal of Epidemiology, vol. 152, no. 1, pp. 13–19, 2000.
[14]  P. J. Diggle and B. S. Rowlingson, “A conditional approach to point process modelling of elevated risk,” Journal of the Royal Statistical Society A, vol. 157, pp. 433–440, 1994.
[15]  P. Elliott, G. Shaddick, I. Kleinschmidt et al., “Cancer incidence near municipal solid waste incinerators in Great Britain,” British Journal of Cancer, vol. 73, no. 5, pp. 702–710, 1996.
[16]  G. Draper, T. Vincent, M. E. Kroll, and J. Swanson, “Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study,” British Medical Journal, vol. 330, no. 7503, pp. 1290–1292, 2005.
[17]  J. García-Pérez, M. F. López-Cima, M. Pollán et al., “Risk of dying of cancer in the vicinity of multiple pollutant sources associated with the metal industry,” Environment International, vol. 40, pp. 116–127, 2012.
[18]  R. Ramis, P. Diggle, K. Cambra, and G. López-Abente, “Prostate cancer and industrial pollution. Risk around putative focus in a multi-source scenario,” Environment International, vol. 37, no. 3, pp. 577–585, 2011.
[19]  J. García-Pérez, M. Pollán, E. Boldo et al., “Mortality due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion installations,” Science of the Total Environment, vol. 407, no. 8, pp. 2593–2602, 2009.
[20]  R. Ramis, E. Vidal, J. García-Pérez et al., “Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in Spain, using poisson models,” BMC Public Health, vol. 9, article 26, 2009.
[21]  K. Cambra, T. Martínez-Rueda, E. Alonso-Fustel et al., “Mortality in small geographical areas and proximity to air polluting industries in the Basque Country (Spain),” Occupational and Environmental Medicine, vol. 68, no. 2, pp. 140–147, 2011.
[22]  J. Wakefield, “Disease mapping and spatial regression with count data,” Biostatistics, vol. 8, no. 2, pp. 158–183, 2007.
[23]  J. Besag, J. York, and A. Mollié, “Bayesian image restoration, with two applications in spatial statistics,” Annals of the Institute of Statistical Mathematics, vol. 43, no. 1, pp. 1–20, 1991.
[24]  D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde, “Bayesian measures of model complexity and fit,” Journal of the Royal Statistical Society B, vol. 64, no. 4, pp. 583–639, 2002.
[25]  J. Ayuso-Ojerana, J. Fernandez-Cuesta, and J. Plaza-Ibeas, Anuario del Mercado Espa?ol, Banesto, Madrid, Spain, 1993.
[26]  H. Rue, S. Martino, and N. Chopin, “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations,” Journal of the Royal Statistical Society B, vol. 71, no. 2, pp. 319–392, 2009.
[27]  The R Project for Statistical Computing (n.d.), January 2012, http://www.r-project.org/.
[28]  J. García-Pérez, E. Boldo, R. Ramis et al., “Validation of the geographic position of EPER-Spain industries,” International Journal of Health Geographics, vol. 7, article 1, 2008.
[29]  A. Kibble and R. Harrison, “Point sources of air pollution,” Occupational Medicine, vol. 55, pp. 425–431, 2005.
[30]  J. F. Viel, D. Pobel, and A. Carre, “Incidence of leukaemia in young people around the La Hague nuclear waste reprocessing plant: a sensitivity analysis,” Statistics in Medicine, vol. 14, no. 21-22, pp. 2459–2472, 1995.
[31]  R. A. Lyons, S. P. Monaghan, M. Heaven, B. N. C. Littlepage, T. J. Vincent, and G. J. Draper, “Incidence of leukaemia and lymphoma in young people in the vicinity of the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991,” Occupational and Environmental Medicine, vol. 52, no. 4, pp. 225–228, 1995.
[32]  S. Belli, M. Benedetti, P. Comba et al., “Case-control study on cancer risk associated to residence in the neighbourhood of a petrochemical plant,” European Journal of Epidemiology, vol. 19, no. 1, pp. 49–54, 2004.
[33]  N. Simonsen, R. Scribner, L. J. Su et al., “Environmental exposure to emissions from petrochemical sites and lung cancer: the lower mississippi interagency cancer study,” Journal of Environmental and Public Health, vol. 2010, Article ID 759645, 2010.
[34]  P. Boffeta and L. Stayner, “Pleural and peritoneal neoplasms,” in Cancer Epidemiology and Prevention, pp. 659–673, Oxford University Press, New York, NY, USA, 2006.
[35]  D. Schottenfeld and J. F. Fraumeni, Cancer Epidemiology and Prevention, Oxford University, 2006, http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195149616.001.0001/acprof-9780195149616.
[36]  N. S. Holmes and L. Morawska, “A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available,” Atmospheric Environment, vol. 40, no. 30, pp. 5902–5928, 2006.
[37]  S. Goria, C. Daniau, P. de Crouy-Chanel et al., “Risk of cancer in the vicinity of municipal solid waste incinerators: importance of using a flexible modelling strategy,” International Journal of Health Geographics, vol. 8, no. 1, article 31, 2009.
[38]  B. Pérez-Gómez, N. Aragonés, M. Pollán et al., “Accuracy of cancer death certificates in Spain: a summary of available information,” Gaceta Sanitaria, vol. 20, supplement 3, pp. 42–51, 2006.
[39]  R. W. Clapp, M. M. Jacobs, and E. L. Loechler, “Environmental and occupational causes of cancer: new evidence 2005–2007,” Reviews on Environmental Health, vol. 23, no. 1, pp. 1–37, 2008.
[40]  G. Lopez-Abente, N. Aragones, R. Ramis et al., “Municipal distribution of bladder cancer mortality in Spain: possible role of mining and industry,” BMC Public Health, vol. 6, article 17, 2006.
[41]  D. Silverman, S. S. Devesa, and L. Moore, “Bladder cancer,” in Cancer Epidemiology and Prevention, pp. 1101–11027, Oxford University Press, New York, NY, USA, 2006.
[42]  G. López-Abente, V. Hernández-Barrera, M. Pollán, N. Aragonés, and B. Pérez-Gómez, “Municipal pleural cancer mortality in Spain,” Occupational and Environmental Medicine, vol. 62, no. 3, pp. 195–199, 2005.
[43]  G. López-Abente, N. Aragonés, M. Pollán, M. Ruiz, and A. Gandarillas, “Leukemia, lymphomas, and myeloma mortality in the vicinity of nuclear power plants and nuclear fuel facilities in Spain,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 10, pp. 925–934, 1999.
[44]  P. Kaatsch, C. Spix, R. Schulze-Rath, S. Schmiedel, and M. Blettner, “Leukaemia in young children living in the vicinity of German nuclear power plants,” International Journal of Cancer, vol. 122, no. 4, pp. 721–726, 2008.
[45]  J. García-Pérez, M. F. López-Cima, E. Boldo et al., “Leukemia-related mortality in towns lying in the vicinity of metal production and processing installations,” Environment International, vol. 36, no. 7, pp. 746–753, 2010.
[46]  S. Liner, S. S. Devesa, and G. Morgan, “The leukemias,” in Cancer Epidemiology and Prevention, pp. 841–871, Oxford University Press, New York, NY, USA, 2006.
[47]  Z. Fang, M. Kulldorff, and D. I. Gregorio, “Brain cancer mortality in the United States, 1986 to 1995: a geographic analysis,” Neuro-Oncology, vol. 6, no. 3, pp. 179–187, 2004.
[48]  E. Regidor, J. L. Gutiérrez-Fisac, M. de los Santos Ichaso, and E. Fernández, “Trends in principal cancer risk factors in Spain,” Annals of Oncology, vol. 21, supplement 3, pp. iii37–iii42, 2010.
[49]  M. I. Izarzugaza, E. Ardanaz, M. D. Chirlaque, et al., “Tobacco-related tumours of the lung, bladder and larynx: changes in Spain,” Annals of Oncology, vol. 21, supplement 3, pp. iii52–iii60, 2010.
[50]  Instituto Nacional de Estadística. (National Statistics Institute) (n.d.), January 2012, http://www.ine.es/jaxi/menu.do?type=pcaxis&path=/t22/e308_mnu&file=inebase&N=&L=0.
[51]  S. Godman and M. Samet, “Cause and cancer epidemiology,” in Cancer Epidemiology and Prevention, pp. 3–9, Oxford University Press, New York, NY, USA, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133