The Dynamic Optical Breast Imaging in the Preoperative Workflow of Women with Suspicious or Malignant Breast Lesions: Development of a New Comprehensive Score
Purpose. To determine the diagnostic accuracy of DOBIComfortScan in patients with Breast Imaging Reporting suspect breast lesions (BI-RADS) 4-5 breast lesions. Materials and Methods. One-hundred and thirteen patients underwent DOBIComfortScan examination before surgery. Twelve parameters were taken into consideration to define DOBI findings. Results. Twenty-seven radical mastectomies, 47 quadrantectomies and 39 wide excisions, were performed. Overall, 65 invasive cancer, 9 in situ carcinoma and 39 nonmalignant lesions, were observed. Ten out of 12 considered parameters resulted significantly in association with histology at discriminant analysis. A summation score of 30.5 resulted to be the best cut off at ROC analysis, giving a sensitivity and specificity of 80% and 87%, respectively, and a positive predictive value of 92.2%. Finally the following DOBI-BI-RADS model was developed: malignant score); possibly malignant ( score); benign but the possibility of malignancy cannot be excluded ( score); benign ( score). Conclusion. definition of other parameters permits to improve the accuracy of this procedure. Further studies are warranted to define the potential role of DOBIComfortScan in breast cancer imaging. 1. Introduction Breast cancer is the most frequent female malignancy in developed countries. In Italy almost 40,000 new cases were diagnosed in 2010, with more than 7,000 deaths [1]. There is a general agreement about the correlation between tumor size and survival; therefore, a delay in diagnosis may negatively affect the prognosis [2]. Mammography screening has played an important role in the reduction of breast cancer mortality that has been observed in the past two decades, although in a recent report it has been stated that the improvements in treatment and in the efficiency of healthcare systems might be plausible explanations for that [3]. In any case, mammography cannot be considered an ideal tool to achieve early diagnosis. Indeed, the density of the breast in younger women can represent a major obstacle for the detection of small tumors; moreover, mammography has limited indication in women with breast implants [4, 5]. Breast MRI has become an essential diagnostic procedure in high-risk women, but it cannot be considered an ideal tool for large scale screenings [6]. The use of transillumination of the breast dates back to the 1920s, when it was proposed to investigate breast cancer [7]. However, the low sensitivity and specificity of transillumination limited its clinical use. With progress in photonic technologies and mathematic modeling
References
[1]
AIRTUM Working Group, “[Italian cancer figures, report 2010: cancer prevalence in Italy. Patients living with cancer, long-term survivors and cured patients],” Epidemiologia e prevenzione, vol. 34, supplement 2, no. 5-6, pp. 1–188, 2010.
[2]
M. Montella, A. Crispo, G. Comella, and G. D'Aiuto, “Re: delay in breast cancer: a prevention dilemma,” Preventive Medicine, vol. 35, no. 6, pp. 616–617, 2002.
[3]
American college of Radiology, Breast Imaging Reporting and Data System (BI-RADS), American College of Radiology, Reston, Va, USA, 2nd edition, 1995.
[4]
M. A. Richards, A. M. Westcombe, S. B. Love, P. Littlejohns, and A. J. Ramirez, “Influence of delay on survival in patients with breast cancer: a systematic review,” The Lancet, vol. 353, no. 9159, pp. 1119–1126, 1999.
[5]
F. J. Gilbert, C. M. Cordiner, I. R. Affleck, D. B. Hood, D. Mathieson, and L. G. Walker, “Breast screening: the psychological sequelae of false-positive recall in women with and without a family history of breast cancer,” European Journal of Cancer, vol. 34, no. 13, pp. 2010–2014, 1998.
[6]
D. J. Thompson, M. O. Leach, G. Kwan-Lim et al., “Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study,” Breast Cancer Research, vol. 11, no. 6, article R80, 2009.
[7]
M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surgery, Gynecology Obstetrics, vol. 48, pp. 721–729, 1929.
[8]
N. Arora, D. Martins, D. Ruggerio et al., “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” American Journal of Surgery, vol. 196, no. 4, pp. 523–526, 2008.
[9]
A. Athanasiou, D. Vanel, C. Balleyguier et al., “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” European Journal of Radiology, vol. 54, no. 1, pp. 72–79, 2005.
[10]
K. Wilson, K. Dhamanaskar, T. Minuk, and G. Moran, “Pilot Study Investigating the Potential use of Dynamic Optical Breast Imaging in Breast Cancer Detection,” Submitted to Canadian Association of Radiologists Journal, 2010.
[11]
L. S. Fournier, D. Vanel, A. Athanasiou et al., “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” European Journal of Radiology, vol. 69, no. 1, pp. 43–49, 2009.
[12]
The Operator’s Manual for the DOBI Medical International, Inc., a Delaware, USA corporation. ComfortScanTM system. Part. No. 5601-0001-00 Rev3. 2.
[13]
The ComfortViewTM Software Reader’s Manual for the DOBI Medical International, Inc., a Delaware, USA corporation. ComfortScan system. Part No. 5601-0015-00 Rev 1.
[14]
S. F. Altekruse, C. L. Kosary, M. Krapcho, et al., SEER Cancer Statistics Review, 1975-2007, National Cancer Institute, Bethesda, Md, USA, 2010.
[15]
S. A. Joslyn, “Racial differences in treatment and survival from early-stage breast carcinoma,” Cancer, vol. 95, no. 8, pp. 1759–1766, 2002.
[16]
W. A. Berg, L. Gutierrez, M. S. NessAiver et al., “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology, vol. 233, no. 3, pp. 830–849, 2004.
[17]
R. A. Smith, V. Cokkinides, D. Brooks, D. Saslow, M. Shah, and O. W. Brawley, “Cancer screening in the United States, 2011: a review of current American Cancer Society guidelines and issues in cancer screening,” CA Cancer Journal for Clinicians, vol. 61, no. 1, pp. 8–30, 2011.
[18]
S. W. Duffy, L. Tabar, A. H. Olsen et al., “Absolute numbers of lives saved and overdiagnosis in breast cancer screening, from a randomized trial and from the Breast Screening Programme in England,” Journal of Medical Screening, vol. 17, no. 1, pp. 25–30, 2010.
[19]
M. J. Yaffe and J. G. Mainprize, “Risk of radiation-induced breast cancer from mammographic screening,” Radiology, vol. 258, no. 1, pp. 98–105, 2011.
[20]
A. Athanasiou, D. Vanel, L. Fournier, and C. Balleyguier, “Optical mammography: a new technique for visualizing breast lesions in women presenting non palpable BIRADS 4-5 imaging findings: preliminary results with radiologic-pathologic correlation,” Cancer Imaging, vol. 7, no. 1, pp. 34–40, 2007.