全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Dose-Painted Intensity Modulated Radiation Therapy Improves Local Control for Locally Advanced Pancreas Cancer

DOI: 10.5402/2012/572342

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. To evaluate the outcomes, adverse events, and therapeutic role of Dose-Painted Intensity-Modulated Radiation Therapy (DP-IMRT) for locally advanced pancreas cancer (LAPC). Methods. Patients with LAPC were treated with induction chemotherapy ( ) and those without metastasis ( ) received DP-IMRT consisting of 45?Gy to Planning Treatment Volume 1 (PTV1) including regional lymph nodes with a concomitant boost to the PTV2 (gross tumor volume ?cm) to either 50.4?Gy ( ) or 54?Gy ( ) in 25 fractions. DP-IMRT cases were compared to three-dimensional conformal radiation therapy (3D-CRT) plans to assess the potential relationship of radiation dose to adverse events. Kaplan-Meier and Cox regression analyses were used to calculate survival probabilities. The Fisher exact test and t-test were utilized to investigate potential prognostic factors of toxicity and survival. Results. Median overall and progression-free survivals were 11.6 and 5.9 months, respectively. Local control was 90%. Post-RT CA-19-9 levels following RT were predictive of survival ( ). Grade 2 and ≥grade 3?GI toxicity were 60% and 20%, respectively. In comparison to 3D-CRT, DP-IMRT plans demonstrated significantly lower V45 values of small bowel ( ), stomach ( ), and mean liver doses ( ). Conclusions. Dose-escalated DP-IMRT offers improved local control in patients treated with induction chemotherapy for LAPC. Radiation-related morbidity appears reduced with DP-IMRT compared to 3D-CRT techniques, likely due to reduction in RT doses to organs at risk. 1. Introduction Pancreatic cancer is currently the fourth leading cause of cancer-related deaths in the United States [1]. There were an estimated 37,680 new cases in 2008 and that approximation has now risen to 43,920 for 2012 [1, 2]. Pancreatic cancer has a very poor overall survival, due in part to the fact that less than 15% of patients have resectable disease at diagnosis [3]. Furthermore, an estimated 15–50% of patients who were initially thought to have resectable cancer will be found at the time of surgery to have unresectable or metastatic disease [3], suggesting an aggressive biology of this cancer. Various modalities have been developed for the treatment of locally advanced pancreatic cancer (LAPC), including chemotherapy alone, chemotherapy followed by chemoradiotherapy, stereotactic body radiotherapy (SBRT), and combination regimens of chemoradiotherapy and SBRT [4–6]. Despite the judicious application of such treatment modalities, LAPC continues to have an extremely poor prognosis with median survival rates range between 7.9

References

[1]  R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA—A Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012.
[2]  A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA—Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008.
[3]  S. T. Chari, “Detecting early pancreatic cancer: problems and prospects,” Seminars in Oncology, vol. 34, no. 4, pp. 284–294, 2007.
[4]  F. Huguet, T. André, P. Hammel et al., “Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies,” Journal of Clinical Oncology, vol. 25, no. 3, pp. 326–331, 2007.
[5]  A. C. Koong, E. Christofferson, Q. T. Le et al., “Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 2, pp. 320–323, 2005.
[6]  A. Mahadevan, S. Jain, M. Goldstein et al., “Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 3, pp. 735–742, 2010.
[7]  C. A. Lacobuzio-Donahue, B. Fu, S. Yachida et al., “DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer,” Journal of Clinical Oncology, vol. 27, no. 11, pp. 1806–1813, 2009.
[8]  H. L. Kindler, D. Niedzwiecki, D. Hollis et al., “Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303),” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3617–3622, 2010.
[9]  P. J. Loehrer Sr., Y. Feng, H. Cardenes, et al., “Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial,” Journal of Clinical Oncology, vol. 29, no. 31, pp. 4105–4112.
[10]  A. Y. Minn, A. Hsu, T. La et al., “Comparison of intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy as adjuvant therapy for gastric cancer,” Cancer, vol. 116, no. 16, pp. 3943–3952, 2010.
[11]  X. N. Sun, Q. Wang, B. X. Gu et al., “Adjuvant radiotherapy for gallbladder cancer: a dosimetric comparison of conformal radiotherapy and intensity-modulated radiotherapy,” World Journal of Gastroenterology, vol. 17, no. 3, pp. 397–402, 2011.
[12]  J. Huang, J. M. Robertson, J. Margolis et al., “Long-term results of full-dose gemcitabine with radiation therapy compared to 5-fluorouracil with radiation therapy for locally advanced pancreas cancer,” Radiotherapy and Oncology, vol. 99, no. 2, pp. 114–119, 2011.
[13]  E. Ben-Josef, A. F. Shields, U. Vaishampayan et al., “Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 2, pp. 454–459, 2004.
[14]  T. Rich, J. Harris, R. Abrams et al., “Phase II study of external irradiation and weekly paclitaxel for nonmetastatic, unresectable pancreatic cancer: RTOG-98-12,” American Journal of Clinical Oncology, vol. 27, no. 1, pp. 51–56, 2004.
[15]  S. Mawdsley, M. Hall, and R. Glynne-Jones, “Locally advanced pancreatic cancer treated with radiation and 5-fluorouracil,” Clinical Oncology, vol. 14, no. 4, pp. 308–312, 2002.
[16]  G. Mishra, J. Butler, C. Ho et al., “Phase II trial of induction gemcitabine/CPT-11 followed by a twice-weekly infusion of gemcitabine and concurrent external beam radiation for the treatment of locally advanced pancreatic cancer,” American Journal of Clinical Oncology, vol. 28, no. 4, pp. 345–350, 2005.
[17]  E. Ben-Josef, M. Schipper, I. R. Francis, et al., “A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer,” International Journal of Radiation Oncology Biology Physics. In press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133