Purpose. To determine whether axial MR imaging could replace bone scan as the primary staging test in newly diagnosed CaP. Material and Methods. We reviewed retrospectively all bone scans performed in newly diagnosed CaP patients from 2000 to 2010 in a single tertiary academic center. We recorded patient age, ethnicity, PSA at diagnosis, TNM stage, Gleason score, alkaline phosphatase, bone scan results and axial imaging if available. Results. Mean patient age was 72 years (41–96), mean PSA and alkaline phosphatase were 268.9?ng/mL and 166?IU/L, respectively. Patients were divided in four groups according to possible bony metastases on bone scan. Group 1: Negative, no metastases demonstrated. Group 2: Positive, metastases only in pelvis and/or lumbar spine. Group 3: Positive, widespread metastases including pelvis and lumbar spine. Group 4: Positive, distant metastases without pelvic or lumbar spine abnormalities. Group 4 patients were analyzed in detail, two had possible disease that was detected only outside the pelvic and lumbar spine, unfortunately follow up images were insufficient to confirm the nature of the lesions. Conclusions. Although bone scan is a useful investigation to confirm and monitor metastasic CaP, our data suggests that axial MR imaging is an adequate primary staging study in untreated disease. Bone scan is unnecessary if CT or MRI of the pelvis and abdomen are clear of metastases. 1. Introduction Prostate cancer was the most common cancer in the UK in 2008, accounting for 24% of all new male cancer diagnosis [1], and is responsible for around 12% of the deaths annually due to cancer (10.168 in 2008). It is calculated that 85% of the patients who die of prostate metastatic cancer have axial skeleton involvement [2], and the presence of these determines the treatment, prognosis, and possibly outcome. It is therefore a priority to determine which patients have developed bone compromise. It is also important to identify patients with little or no risk of metastases to avoid unnecessary investigations and procedures [3–5]. Currently, bone scan is the most commonly used test to diagnose bone metastases [5–7], although it has a low specificity due to the lack of precision in differentiating benign disease from metastatic cancer [2]. There are several studies demonstrating that only certain patients require a bone scan [3–5, 7–11] once the diagnosis has been reached (PSA level above 20?ng/mL, Gleason 4, T3-T4 disease). Also numerous studies have shown that both MRI [12–14] and CT scan [13] have a higher sensitivity and specificity than
References
[1]
Office for National Statistics, Cancer Statistics Registrations: Registrations of Cancer Diagnosed in 2007, England Series MB1 no. 38, National Statistics, London, UK, 2010.
[2]
A. Heidenreich, G. Aus, M. Bolla, et al., “EAU guidelines on prostate cancer,” European Urology, vol. 53, pp. 68–80, 2008.
[3]
J. M. O'Sullivan, A. R. Norman, G. J. Cook, C. Fisher, and D. P. Dearnaley, “Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital,” BJU International, vol. 92, no. 7, pp. 685–689, 2003.
[4]
N. Lee, R. Fawaaz, C. A. Olsson et al., “Which patients with newly diagnosed prostate cancer need a radionuclide bone scan? An analysis based on 631 patients,” International Journal of Radiation Oncology Biology Physics, vol. 48, no. 5, pp. 1443–1446, 2000.
[5]
C. T. Lee and J. E. Oesterling, “Using prostate-specific antigen to eliminate the staging radionuclide bone scan,” Urologic Clinics of North America, vol. 24, no. 2, pp. 389–394, 1997.
[6]
B. McGregor, A. G. S. Tulloch, M. F. Quinlan, and F. Lovegrove, “The role of bone scanning in the assessment of prostatic carcinoma,” British Journal of Urology, vol. 50, no. 3, pp. 178–181, 1978.
[7]
S. Haukaas, J. Roervik, O. J. Halvorsen, and M. Foelling, “When is bone scintigraphy necessary in the assessment of newly diagnosed, untreated prostate cancer?” British Journal of Urology, vol. 79, no. 5, pp. 770–776, 1997.
[8]
J. J. Pollen, K. Gerber, W. L. Ashburn, and J. D. Schmidt, “Nuclear bone imaging in metastatic cancer of the prostate,” Cancer, vol. 47, no. 11, pp. 2585–2594, 1981.
[9]
M. Hirobe, A. Takahashi, S. I. Hisasue et al., “Bone scanning—who needs it among patients with newly diagnosed prostate cancer?” Japanese Journal of Clinical Oncology, vol. 37, no. 10, pp. 788–792, 2007.
[10]
A. Rydh, R. Tomic, B. Tavelin, S. O. Hietala, and J. E. Damber, “Predictive value of prostate-specific antigen, tumour stage and tumour grade for the outcome of bone scintigraphy in patients with newly diagnosed prostate cancer,” Scandinavian Journal of Urology and Nephrology, vol. 33, no. 2, pp. 89–93, 1999.
[11]
M. E. Gleave, D. Coupland, D. Drachenberg et al., “Ability of serum prostate-specific antigen levels to predict normal bone scans in patients with newly diagnosed prostate cancer,” Urology, vol. 47, no. 5, pp. 708–712, 1996.
[12]
F. E. Lecouvet, D. Geukens, A. Stainier et al., “Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies,” Journal of Clinical Oncology, vol. 25, no. 22, pp. 3281–3287, 2007.
[13]
H. Hricak, P. L. Choyke, S. C. Eberhardt, S. A. Leibel, and P. T. Scardino, “Imaging prostate cancer: a multidisciplinary perspective,” Radiology, vol. 243, no. 1, pp. 28–53, 2007.
[14]
Z. C. Traill, D. Talbot, S. Golding, and F. V. Gleeson, “Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases,” Clinical Radiology, vol. 54, no. 7, pp. 448–451, 1999.
[15]
A. Heidenreich, P. Albers, J. Classen et al., “Imaging studies in metastatic urogenital cancer patients undergoing systemic therapy: recommendations of a multidisciplinary consensus meeting of the association of urological oncology of the German cancer society,” Urologia Internationalis, vol. 85, no. 1, pp. 1–10, 2010.
[16]
E. Avrahami, R. Tadmor, O. Dally, and H. Hadar, “Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans,” Journal of Computer Assisted Tomography, vol. 13, no. 4, pp. 598–602, 1989.
[17]
K. Nakanishi, M. Kobayashi, K. Nakaguchi et al., “Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images,” Magnetic Resonance in Medical Sciences, vol. 6, no. 3, pp. 147–155, 2007.
[18]
B. Tombal, A. Rezazadeh, P. Therasse, P. J. Van Cangh, B. Vande Berg, and F. E. Lecouvet, “Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases,” Prostate, vol. 65, no. 2, pp. 178–187, 2005.