Introduction. Nephrotoxicity is one the side effect of cisplatin therapy and erythropoietin has been candidate as a nephroprotectant agent. However, its nephroprotective effect when it is accompained with estrogen has not been studied in female. Methods. 27 ovariectomized female Wistar rats divided into five groups. Groups 1 & 2 received estradiol valerate (0.5?mg/kg/week) for four weeks, and single dose of cisplatin (7?mg/kg, ip) was administrated at the end of week 3. Then the group 1 was treated with erythropoietin (100?U/kg/day), and the group 2 received vehicle during week 4. Groups 3 and 4 were treated similar to group 1 and 2, except for placebo instead estradiol valerate. Group5 (negative control) received placebo during the study. Animals were killed at the end of week 4. Results. In non-erythropoietin treated rats, cisplatin significantly increased the serum levels of blood urea nitrogen and creatinine ( ). However, these biomarkers significantly decreased by erythropoietin ( ). The weight loss, kidney weight, and kidney tissue damage score in rats treated with cisplatin but without estradiol were significantly less than the values in similar group when estradiol was present ( ). Conclusion. It seems that erythropoietin could protect the kidney against cisplatin-induced nephrotoxicity. This protective effect was not observed when estrogen was present. 1. Introduction Cisplatin (cis-diamminedichloroplatinum II, CP) as a potent antitumor drug is commonly used for a wide variety of tumors, including head and neck, lung, testis, ovary, and breast tumors [1]. However, it has many side effects like ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. The main dose-limiting side effect of CP is nephrotoxicity [2]. CP injection leads to accumulation of platinum within kidney tissue and influences renal tubular function [3]. The renal dysfunction following exposure to CP is involved in tubular epithelial cell toxicity, apoptosis, vasoconstriction in the renal microvasculature, proinflammatory effects, and activation of mitogen-activated protein kinases [4, 5]. These events lead to wasting of sodium, potassium, magnesium, elevation in serum levels of creatinine (Cr) and blood urea nitrogen (BUN), reduction in serum albumin, and decrease in the glomerular filtration rate [2, 3, 5]. Many agents such as vitamins C and E, losartan, and l-arginine have been proposed to protect the kidney against nephrotoxicity of platinum drugs [6–8]. EPO is one of these agents used for treatment of anemia and acute renal failure induced by CP [9, 10]. EPO
References
[1]
I. Arany and R. L. Safirstein, “Cisplatin nephrotoxicity,” Seminars in Nephrology, vol. 23, no. 5, pp. 460–464, 2003.
[2]
R. P. Miller, R. K. Tadagavadi, G. Ramesh, and W. B. Reeves, “Mechanisms of cisplatin nephrotoxicity,” Toxins, vol. 2, no. 11, pp. 2490–2518, 2010.
[3]
S. Y. Saad and A. C. Al-Rikabi, “Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats,” Chemotherapy, vol. 48, no. 1, pp. 42–48, 2002.
[4]
G. Nowak, “Protein kinase C-α and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells,” The Journal of Biological Chemistry, vol. 277, no. 45, pp. 43377–43388, 2002.
[5]
X. Yao, K. Panichpisal, N. Kurtzman, and K. Nugent, “Cisplatin nephrotoxicity: a review,” American Journal of the Medical Sciences, vol. 334, no. 2, pp. 115–124, 2007.
[6]
S. Saleh, A. A. Ain-Shoka, E. El-Demerdash, and M. M. Khalef, “Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury,” Chemotherapy, vol. 55, no. 6, pp. 399–406, 2009.
[7]
F. Eshraghi-Jazi, M. Nematbakhsh, H. Nasri et al., “The protective role of endogenous nitric oxide donor (L-arginine) in cisplatin-induced nephrotoxicity: gender related differences in rat model,” Journal of Research in Medical Sciences, vol. 16, no. 11, pp. 1389–1396, 2011.
[8]
B. H. Ali and M. S. Al Moundhri, “Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research,” Food and Chemical Toxicology, vol. 44, no. 8, pp. 1173–1183, 2006.
[9]
C. Bagnis, H. Beaufils, C. Jacquiaud et al., “Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat,” Nephrology Dialysis Transplantation, vol. 16, no. 5, pp. 932–938, 2001.
[10]
H. E. Mohamed, S. E. El-Swefy, R. H. Mohamed, and A. M. Ghanim, “Effect of erythropoietin therapy on the progression of cisplatin induced renal injury in rats,” Experimental and Toxicologic Pathology. In press.
[11]
D. A. Vesey, C. Cheung, B. Pat, Z. Endre, G. Gobé, and D. W. Johnson, “Erythropoietin protects against ischaemic acute renal injury,” Nephrology Dialysis Transplantation, vol. 19, no. 2, pp. 348–355, 2004.
[12]
E. J. Sharples, N. Patel, P. Brown et al., “Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 2115–2124, 2004.
[13]
D. Kong, L. Zhuo, C. Gao, S. Shi, N. Wang, Z. Huang, et al., “Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-inducedapoptosis,” Journal of Nephrology. In press.
[14]
K. Rjiba-Touati, I. A. Boussema, A. Belarbia, A. Achour, and H. Bacha, “Protective effect of recombinant human erythropoietin against cisplatin-induced oxidative stress and nephrotoxicity in rat kidney,” International Journal of Toxicology, vol. 30, no. 5, pp. 510–517, 2011.
[15]
D. Zafirov, G. Petrusevska, A. Sikole et al., “Erythropoietin reduces cumulative nephrotoxicity from cisplatin and enhances renal tubular cell proliferation,” Prilozi, vol. 29, no. 2, pp. 167–183, 2008.
[16]
S. Yalcin, S. Müftüo?lu, E. Cetin et al., “Protection against cisplatin-induced nephrotoxicity by recombinant human erythropoietin,” Medical Oncology, vol. 20, no. 2, pp. 169–173, 2003.
[17]
M. Rafieian-Kopaei, H. Nasri, M. Nematbakhsh, A. Baradaran, GheissariA, H. Rouhi, et al., “Erythropoietin ameliorates genetamicin-induced renal toxicity: a biochemical and histopathological study,” Journal of Nephropathology, vol. 1, no. 2, pp. 109–116, 2012.
[18]
D. W. Johnson, D. A. Vesey, and G. C. Gobe, “Erythropoietin protects against acute kidney injury and failure,” Open Drug Discovery Journal, vol. 2, no. 1, pp. 8–17, 2010.
[19]
C. Peschle, I. A. Rappaport, G. F. Sasso, M. Condorelli, and A. S. Gordon, “The role of estrogen in the regulation of erythropoietin production,” Endocrinology, vol. 92, no. 2, pp. 358–362, 1973.
[20]
H. Mukundan, T. C. Resta, and N. L. Kanagy, “17β-estradiol decreases hypoxic induction of erythropoietin gene expression,” American Journal of Physiology, vol. 283, no. 2, pp. R496–R504, 2002.
[21]
S. Y. Saad, T. A. O. Najjar, M. H. Daba, and A. C. Al-Rikabi, “Inhibition of nitric oxide synthase aggravates cisplatin-induced nephrotoxicity: effect of 2-amino-4-methylpyridine,” Chemotherapy, vol. 48, no. 6, pp. 309–315, 2002.
[22]
E. Moore and R. Bellomo, “Erythropoietin, (EPO) in acute kidney injury,” Annals of Intensive Care, vol. 1, no. 1, p. 3, 2011.
[23]
K. Rjiba-Touati, I. Ayed-Boussema, C. Bouaziz et al., “Protective effect of erythropoietin against cisplatin-induced nephrotoxicity in rats: antigenotoxic and antiapoptotic effect,” Drug and Chemical Toxicology, vol. 35, no. 1, pp. 89–95, 2012.
[24]
D. W. Lee, I. S. Kwak, S. B. Lee et al., “Post-treatment effects of erythropoietin and nordihydroguaiaretic acid on recovery from cisplatin-induced acute renal failure in the rat,” Journal of Korean medical science, vol. 24, supplement 1, pp. S170–S175, 2009.
[25]
J. Li, D. A. Vesey, D. W. Johnson, and G. Gobe, “Erythropoietin reduces cisplatin-induced apoptosis in renal carcinoma cells via a PKC dependent pathway,” Cancer Biology and Therapy, vol. 6, no. 12, pp. 1944–1950, 2007.
[26]
N. D. Vaziri, X. J. Zhou, and S. Y. Liao, “Erythropoietin enhances recovery from cisplatin-induced acute renal failure,” American Journal of Physiology, vol. 266, no. 3, part 2, pp. F360–F366, 1994.
[27]
D. Staki?aitis, G. Dudeniene, R. J. Jankunas, G. Gra?eliene, J. Did?iapetriene, and B. Pundziene, “Cisplatin increases urinary sodium excretion in rats: gender-related differences,” Medicina, vol. 46, no. 1, pp. 45–50, 2010.
[28]
M. Nematbakhsh, A. Talebi, H. Nasri, T. Safari, S. Dolatkhah, F. Ashrafi, et al., “Some evidence for sex-based differences in cisplatin-induced nephrotoxicity in rats,” Clinical and Experimental Medical Letters, vol. 53, no. 1-229, 31 pages, 2012.
[29]
M. A. Beleh, Y. C. Lin, and R. W. Brueggemeier, “Estrogen metabolism in microsomal, cell, and tissue preparations of kidney and liver from Syrian hamsters,” Journal of Steroid Biochemistry and Molecular Biology, vol. 52, no. 5, pp. 479–489, 1995.
[30]
D. Roy and J. G. Liehr, “Target organ-specific inactivation of drug metabolizing enzymes in kidney of hamsters treated with estradiol,” Molecular and Cellular Biochemistry, vol. 110, no. 1, pp. 31–39, 1992.
[31]
M. Butterworth, S. S. Lau, and T. J. Monks, “2-Hydroxy-4-glutathion-S-yl-17β-estradiol and 2-hydroxy-1-glutathion-S-yl-17β-estradiol produce oxidative stress and renal toxicity in an animal model of 17β-estradiol-mediated nephrocarcinogenicity,” Carcinogenesis, vol. 19, no. 1, pp. 133–139, 1998.
[32]
C. S. Ha, B. S. Joo, S. C. Kim, J. K. Joo, H. G. Kim, and K. S. Lee, “Estrogen administration during superovulation increases oocyte quality and expressions of vascular endothelial growth factor and nitric oxide synthase in the ovary,” Journal of Obstetrics and Gynaecology Research, vol. 36, no. 4, pp. 789–795, 2010.
[33]
K. Kauser and G. M. Rubanyi, “Gender difference in bioassayable endothelium-derived nitric oxide from isolated rat aortae,” American Journal of Physiology, vol. 267, no. 6, part 2, pp. H2311–H2317, 1994.
[34]
C. Adams, H. O. McCarthy, J. A. Coulter et al., “Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells,” Journal of Gene Medicine, vol. 11, no. 2, pp. 160–168, 2009.
[35]
M. Jung, G. Hotter, J. L. Vi?as, and A. Sola, “Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury,” Toxicology and Applied Pharmacology, vol. 234, no. 2, pp. 236–246, 2009.
[36]
H. Mukundan, T. C. Resta, and N. L. Kanagy, “17-β estradiol independently regulates erythropoietin synthesis and NOS activity during hypoxia,” Journal of Cardiovascular Pharmacology, vol. 43, no. 2, pp. 312–317, 2004.
[37]
V. Todorov, B. Gess, A. G?decke, C. Wagner, J. Schr?der, and A. Kurtz, “Endogenous nitric oxide attenuates erythropoietin gene expression in vivo,” Pflugers Archiv European Journal of Physiology, vol. 439, no. 4, pp. 445–448, 2000.
[38]
E. Ates, A. U. Yalcin, S. Yilmaz, T. Koken, and C. Tokyol, “Protective effect of erythropoietin on renal ischemia and reperfusion injury,” ANZ Journal of Surgery, vol. 75, no. 12, pp. 1100–1105, 2005.
[39]
A. de Beuf, P. C. D'Haese, and A. Verhulst, “Epoetin delta as an antifibrotic agent in the remnant kidney rat: a possible role for transforming growth factor beta and hepatocyte growth factor,” Nephron—Experimental Nephrology, vol. 115, no. 3, pp. e46–e59, 2010.
[40]
P. P. Dukes and E. Goldwasser, “Inhibition of erythropoiesis by estrogens,” Endocrinology, vol. 69, pp. 21–29, 1961.
[41]
W. Jelkmann, “Erythropoietin: structure, control of production, and function,” Physiological Reviews, vol. 72, no. 2, pp. 449–489, 1992.