Serum prostate-specific antigen (PSA) levels ranging from 4 to 10?ng/mL is considered a diagnostic gray zone for detecting prostate cancer because biopsies reveal no evidence of cancer in 75% of these subjects. Our goal was to discover a new highly specific biomarker for prostate cancer by analyzing plasma proteins using a proteomic technique. Enriched plasma proteins from 25 prostate cancer patients and 15 healthy controls were analyzed using a label-free quantitative shotgun proteomics platform called 2DICAL (2-dimensional image converted analysis of liquid chromatography and mass spectrometry) and candidate biomarkers were searched. Among the 40,678 identified mass spectrum (MS) peaks, 117 peaks significantly differed between prostate cancer patients and healthy controls. Ten peaks matched carbonic anhydrase I (CAI) by tandem MS. Independent immunological assays revealed that plasma CAI levels in 54 prostate cancer patients were significantly higher than those in 60 healthy controls ( , Mann-Whitney test). In the PSA gray-zone group, the discrimination rate of prostate cancer patients increased by considering plasma CAI levels. CAI can potentially serve as a valuable plasma biomarker and the combination of PSA and CAI may have great advantages for diagnosing prostate cancer in patients with gray-zone PSA level. 1. Introduction Prostate cancer is the most common malignancy in the United State. In 2009, 192,280 men were estimated to have been diagnosed with prostate cancer, and 27,360 of these patients died in the United States [1]. The prostate-specific antigen (PSA) is used for the detection of prostate cancer in daily practice, but its diagnostic reliability is hampered by its low specificity. Thus, serum PSA levels ranging from 4 to 10?ng/mL are called the “gray zone” in which it is very difficult to discriminate between patients with prostate cancer and those with benign prostatic hyperplasia (BPH), prostatitis, or normal prostate. Furthermore, among the patients with serum PSA levels between 4 to 10?ng/mL, only 25% will be found to have prostate cancer [2]. Serum PSA levels can also increase in prostatitis, [3, 4] and approximately 20%–30% of prostate cancers are missed when the cut-off value is set to 4?ng/mL [5–7]. The false negative rate in the first biopsy is estimated between 12% and 32% [8, 9], and a large population of men with chronically high serum PSA levels undergo repeated biopsies to eliminate the possibility of prostate cancer [3, 4]. Our quantitative label-free shotgun proteomics analysis system, called 2-dimensional image
References
[1]
A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA—A Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009.
[2]
W. J. Catalona, D. S. Smith, T. L. Ratliff, and J. W. Basler, “Detection of organ-confined prostate cancer is increased through prostate- specific antigen-based screening,” JAMA, vol. 270, no. 8, pp. 948–954, 1993.
[3]
J. Pannek and A. W. Partin, “Prostate-specific antigen: what's new in 1997,” Oncology, vol. 11, no. 9, pp. 1273–1278, 1997.
[4]
S. Loeb, S. N. Gashti, and W. J. Catalona, “Exclusion of inflammation in the differential diagnosis of an elevated prostate-specific antigen (PSA),” Urologic Oncology, vol. 27, no. 1, pp. 64–66, 2009.
[5]
W. J. Catalona, J. P. Richie, F. R. Ahmann et al., “Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: Results of a multicenter clinical trial of 6,630 men,” Journal of Urology, vol. 151, no. 5, pp. 1283–1290, 1994.
[6]
W. J. Catalona, D. S. Smith, and D. K. Ornstein, “Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0?ng/mL and benign prostate examination: Enhancement of specificity with free PSA measurements,” JAMA, vol. 277, no. 18, pp. 1452–1455, 1997.
[7]
A. Magklara, A. Scorilas, W. J. Catalona, and E. P. Diamandis, “The combination of human glandular Kallikrein and free prostrate- specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA,” Clinical Chemistry, vol. 45, no. 11, pp. 1960–1966, 1999.
[8]
J. Cervera Deval, F. J. Morales Olaya, J. Jornet Fayos, and M. González A?ón, “Diagnostic value of the second prostate biopsies in males of risk. Study stratified by value of PSA,” Actas Urologicas Espanolas, vol. 28, no. 9, pp. 666–671, 2004.
[9]
M. Raber, V. Scattoni, A. Salonia, P. Consonni, and P. Rigatti, “Repeated ultrasound-guided transrectal prostate biopsy in patients with negative histologic test,” Archivio Italiano di Urologia, Andrologia, vol. 72, no. 4, pp. 197–199, 2000.
[10]
M. Ono, M. Shitashige, K. Honda et al., “Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectromery,” Molecular and Cellular Proteomics, vol. 5, no. 7, pp. 1338–1347, 2006.
[11]
A. Negishi, M. Ono, Y. Handa et al., “Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry,” Cancer Science, vol. 100, no. 3, pp. 514–519, 2009.
[12]
M. Ono, J. Matsubara, K. Honda et al., “Prolyl 4-hydroxylation of α-fibrinogen. A novel protein modification revealed by plasma proteomics,” The Journal of Biological Chemistry, vol. 284, no. 42, pp. 29041–29049, 2009.
[13]
Y. Murakoshi, K. Honda, S. Sasazuki et al., “Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray,” Cancer Science, vol. 102, no. 3, pp. 630–638, 2011.
[14]
J. Matsubara, K. Honda, M. Ono et al., “Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 160–171, 2011.
[15]
A. Yokomizo, M. Takakura, Y. Kanai et al., “Use of quantitative shotgun proteomics to identify fibronectin 1 as a potential plasma biomarker for clear cell carcinoma of the kidney,” Cancer Biomarkers, vol. 10, no. 3-4, pp. 175–183, 2011.
[16]
M. Ono, M. Kamita, Y. Murakoshi, et al., “Biomarker discovery of pancreatic and gastrointestinal cancer by 2DICAL: 2-dimensional image-converted analysis of liquid chromatography and mass spectrometry,” International Journal of Proteomics, vol. 2012, Article ID 897412, 10 pages, 2012.
[17]
Y. Tanaka, H. Akiyama, T. Kuroda et al., “A novel approach and protocol for discovering extremely low-abundance proteins in serum,” Proteomics, vol. 6, no. 17, pp. 4845–4855, 2006.
[18]
M. Idogawa, T. Yamada, K. Honda, S. Sato, K. Imai, and S. Hirohashi, “Poly(ADP-ribose) polymerase-1 is a component of the oncogenic T-cell factor-4/beta;-catenin complex,” Gastroenterology, vol. 128, no. 7, pp. 1919–1936, 2005.
[19]
H. Lilja, D. Ulmert, and A. J. Vickers, “Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring,” Nature Reviews Cancer, vol. 8, no. 4, pp. 268–278, 2008.
[20]
S. Loeb and W. J. Catalona, “What to do with an abnormal PSA test,” Oncologist, vol. 13, no. 3, pp. 299–305, 2008.
[21]
C. T. Supuran and A. Scozzafava, “Carbonic anhydrases as targets for medicinal chemistry,” Bioorganic and Medicinal Chemistry, vol. 15, no. 13, pp. 4336–4350, 2007.
[22]
E. R. Swenson, “Distribution and functions of carbonic anhydrase in the gastrointestinal tract,” in Carbonic Anhydrases: Cellular Physiology and Molecular Genetics, S. J. Dodgson, R. E. Tashian, G. Gros, and N. D. Carter, Eds., pp. 265–287, Plenum Press, New York, NY, USA, 1991.
[23]
G. Lonnerholm and P. Wistrand, “Carbonic anhydrase in the human fetal gastrointestinal tract,” Biology of the Neonate, vol. 44, no. 3, pp. 166–176, 1983.
[24]
I. B. Renes, M. Verburg, D. J. P. M. Van Nispen et al., “Epithelial proliferation, cell death, and gene expression in experimental colitis: Alterations in carbonic anhydrase I, mucin MUC2, and trefoil factor 3 expression,” International Journal of Colorectal Disease, vol. 17, no. 5, pp. 317–326, 2002.
[25]
C. T. Supuran, “Carbonic anhydrase inhibition/activation: Trip of a scientist around the world in the search of novel chemotypes and drug targets,” Current Pharmaceutical Design, vol. 16, no. 29, pp. 3233–3245, 2010.