全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Development of Safer Gene Delivery Systems to Minimize the Risk of Insertional Mutagenesis-Related Malignancies: A Critical Issue for the Field of Gene Therapy

DOI: 10.5402/2012/616310

Full-Text   Cite this paper   Add to My Lib

Abstract:

Integrating gene delivery systems allow for a more stable transgene expression in mammalian cells than the episomal ones. However, the integration of the shuttle vector within the cellular chromosomal DNA is associated with the risk of insertional mutagenesis, which, in turn, may cause malignant cell transformation. The use of a retroviral-derived vector system was responsible for the development of leukemia in five children, who participated in various clinical trials for the treatment of severe combined immunodeficiency (SCID-X1) in France and in the United Kingdom. Unfortunately, the hematological malignancy claimed the life of one patient in 2004, who was enrolled in the French clinical trial. In addition, adeno-associated-viral-(AAV-) mediated gene transfer induced tumors in animal models, whereas the Sleeping Beauty (SB) DNA transposon system was associated with insertional mutagenesis events in cell culture systems. On these grounds, it is necessary to develop safer gene delivery systems for the genetic manipulation of mammalian cells. This paper discusses the latest achievements that have been reported in the field of vector design. 1. Introduction Gene transfer technology requires the introduction of recombinant genetic elements into human cells and holds a considerable therapeutic potential for the treatment of a wide variety of pathological conditions, such as cancer, genetic disorders, neurological illnesses, diabetes, infectious diseases, and cardiovascular maladies [1–7]. The gene-based treatments both of cancer and infectious diseases may require only a transient expression of the recombinant genetic elements, which have the function to destroy either neoplastic tissues, or cells that harbor an infectious agent [3, 4]. Conversely, genetic disorders, neurological illnesses and cardiovascular maladies need a long-term transgene expression, as the treatment of these maladies envisions the introduction of functional copies of certain genes in the attempt to correct the phenotype of the disease [3, 4]. A long-term transgene expression is also required for autologous T lymphocytes that are genetically engineered to express recombinant T cell receptors, which may impart binding specificity either for neoplastic markers or infected cells [5–7]. To this end, gene delivery systems that integrate their genome into the target cell chromosomal DNA allow for a more stable and long-lasting transgene expression [3, 4]. Various types of gene delivery systems are currently available [3, 4, 8–16]. The most common gene transfer models derive from

References

[1]  M. L. Edelstein, M. R. Abedi, J. Wixon, and R. M. Edelstein, “Gene therapy clinical trials worldwide 1989?2004—an overview,” Journal of Gene Medicine, vol. 6, no. 6, pp. 597–602, 2004.
[2]  M. L. Edelstein, M. R. Abedi, and J. Wixon, “Gene therapy clinical trials worldwide to 2007—an update,” Journal of Gene Medicine, vol. 9, no. 10, pp. 833–842, 2007.
[3]  G. Romano, “Gene transfer in experimental medicine,” Drug News and Perspectives, vol. 16, no. 5, pp. 267–276, 2003.
[4]  G. Romano, P. Micheli, C. Pacilio, and A. Giordano, “Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications,” Stem Cells, vol. 18, no. 1, pp. 19–39, 2000.
[5]  B. J. Uttenthal I. Chua, E. C. Morris, and H. J. Strauss, “Challenges in T cell receptor gene therapy,” The Journal of Gene Medicine, vol. 14, no. 6, pp. 386–399, 2012.
[6]  R. A. Willemsen, R. Debets, P. Chames, and R. L. H. Bolhuis, “Genetic engineering of T cell specificity for immunotherapy of cancer,” Human Immunology, vol. 64, no. 1, pp. 56–68, 2003.
[7]  S. Thomas, H. J. Stauss, and E. C. Morris, “Molecular immunology lessons from therapeutic T-cell receptor gene transfer,” Immunology, vol. 129, no. 2, pp. 170–177, 2010.
[8]  S. A. Rosenberg, P. Aebersold, K. Cornetta et al., “Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction,” New England Journal of Medicine, vol. 323, no. 9, pp. 570–578, 1990.
[9]  R. M. Blaese, K. W. Culver, A. D. Miller et al., “T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years,” Science, vol. 270, no. 5235, pp. 475–480, 1995.
[10]  L. M. Muul, L. M. Tuschong, S. L. Soenen et al., “Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial,” Blood, vol. 101, no. 7, pp. 2563–2569, 2003.
[11]  G. Romano, “Current development of lentiviral-mediated gene transfer,” Drug News and Perspectives, vol. 18, no. 2, pp. 128–134, 2005.
[12]  G. Romano, “Current development of adeno-associated viral vectors,” Drug News and Perspectives, vol. 18, no. 5, pp. 311–316, 2005.
[13]  G. Romano, “The controversial role of adenoviral-derived vectors in gene therapy programs: Where do we stand?” Drug News and Perspectives, vol. 19, no. 2, pp. 99–106, 2006.
[14]  G. Romano, “Current development of nonviral-mediated gene transfer,” Drug News and Perspectives, vol. 20, no. 4, pp. 227–231, 2007.
[15]  G. Romano, P. P. Claudio, T. Tonini, and A. Giordano, “Human immunodeficiency virus type 1 (HIV-1) derived vectors: safety considerations and controversy over therapeutic applications,” European Journal of Dermatology, vol. 13, no. 5, pp. 424–429, 2003.
[16]  B. L. Levine, L. M. Humeau, J. Boyer et al., “Gene transfer in humans using a conditionally replicating lentiviral vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17372–17377, 2006.
[17]  G. Romano, “Latest advances in gene transfer technology: a summary on the fourteen annual meeting of the American Society of Gene and Cell Therapy,” Drugs of the Future, vol. 36, no. 7, pp. 535–541, 2011.
[18]  M. Brenner, “Gene transfer by adenovectors,” Blood, vol. 94, no. 12, pp. 3965–3967, 1999.
[19]  G. Romano, “The standpoint of stem cell research,” Drug News and Perspectives, vol. 21, no. 7, pp. 408–412, 2008.
[20]  G. Romano, “Artificial reprogramming of human somatic cells to generate pluripotent stem cells: a possible alternative to the controversial use of human embryonic stem cells,” Drug News & Perspectives, vol. 21, no. 8, pp. 440–445, 2008.
[21]  I. A. Muchkaeva, E. B. Dashinimaev, V. V. Terskikh, Y. V. Sukhanov, and A. V. Vasiliev, “Molecular mechanisms of induced pluripotency,” ActaNaturae, vol. 4, no. 1, pp. 12–22, 2012.
[22]  C. Wu and C. E. Dunbar, “Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity,” Frontiers of Medicine in China, vol. 5, no. 4, pp. 356–371, 2011.
[23]  X. Ren, C. G. T. Tahimic, M. Katoh, A. Kurimasa, T. Inoue, and M. Oshimura, “Human artificial chromosome vectors meet stem cells: new prospects for gene delivery,” Stem Cell Reviews, vol. 2, no. 1, pp. 43–50, 2006.
[24]  P. Asuri, M. A. Bartel, T. Vazin, J.-H. Jang, T. B. Wong, and D. V. Schaffer, “Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells,” Molecular Therapy, vol. 20, no. 2, pp. 329–338, 2012.
[25]  Y. Strulovici, P. L. Leopold, T. P. O'Connor, R. G. Pergolizzi, and R. G. Crystal, “Human embryonic stem cells and gene therapy,” Molecular Therapy, vol. 15, no. 5, pp. 850–866, 2007.
[26]  V. Sueblinvong, B. T. Suratt, and D. J. Weiss, “Novel therapies for the treatment of cystic fibrosis: new developments in gene and stem cell therapy,” Clinics in Chest Medicine, vol. 28, no. 2, pp. 361–379, 2007.
[27]  U. R. Goessler, K. Riedel, K. H?rmann, and F. Riedel, “Perspectives of gene therapy in stem cell tissue engineering,” Cells Tissues Organs, vol. 183, no. 4, pp. 169–179, 2006.
[28]  N. Kimelman, G. Pelled, G. A. Helm, J. Huard, E. M. Schwarz, and D. Gazit, “Review: gene- and stem cell-based therapeutics for bone regeneration and repair,” Tissue Engineering, vol. 13, no. 6, pp. 1135–1150, 2007.
[29]  J. A. Korecka, J. Verhaagen, and E. M. Hol, “Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease,” Regenerative Medicine, vol. 2, no. 4, pp. 425–446, 2007.
[30]  K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
[31]  J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007.
[32]  G. Romano, “Latest advances in iPS cell technology: toward the delineation of the genetic and epigenetic codes for pluripotency and development of a novel system for the study of human maladies and drug screening,” Drugs of the Future, vol. 37, no. 6, pp. 431–435, 2012.
[33]  K. H. Narsinh and J. C. Wu, “Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead,” Molecular Therapy, vol. 18, no. 6, pp. 1061–1063, 2010.
[34]  C. Baum, “What are the consequences of the fourth case?” Molecular Therapy, vol. 15, no. 8, pp. 1401–1402, 2007.
[35]  C. Baum, “Gene therapy for SCID-X1: focus on clinical data,” Molecular Therapy, vol. 19, no. 12, pp. 2103–2104, 2011.
[36]  M. Cavazzana-Calvo and A. Fischer, “Gene therapy for severe combined immunodeficiency: Are we there yet?” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1456–1465, 2007.
[37]  S. Hacein-Bey-Abina, C. von Kalle, M. Schmidt et al., “LMO2-Associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003.
[38]  S. Hacein-Bey-Abina, A. Garrigue, G. P. Wang et al., “Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3132–3142, 2008.
[39]  S. Hacein-Bey-Abina, C. von Kalle, M. Schmidt et al., “A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency,” New England Journal of Medicine, vol. 348, no. 3, pp. 255–256, 2003.
[40]  P. Noguchi, “Risks and benefits of gene therapy,” New England Journal of Medicine, vol. 348, no. 3, pp. 193–194, 2003.
[41]  J. Chinen and J. M. Puck, “Successes and risks of gene therapy in primary immunodeficiencies,” Journal of Allergy and Clinical Immunology, vol. 113, no. 4, pp. 595–604, 2004.
[42]  S. J. Howe, M. R. Mansour, K. Schwarzwaelder et al., “Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3143–3150, 2008.
[43]  K. Pike-Overzet, M. van der Burg, G. Wagemaker, J. J. M. van Dongen, and F. J. T. Staal, “New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy,” Molecular Therapy, vol. 15, no. 11, pp. 1910–1916, 2007.
[44]  C. Baum, “Insertional mutagenesis in gene therapy and stem cell biology,” Current Opinion in Hematology, vol. 14, no. 4, pp. 337–342, 2007.
[45]  M. Cavazzana-Calvo, S. Hacein-Bey, G. de Saint Basile et al., “Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease,” Science, vol. 288, no. 5466, pp. 669–672, 2000.
[46]  M. P. McCormack and T. H. Rabbitts, “Activation of the T-cell oncogene LMO2 after gene therapy for X-linked Severe combined immunodeficiency,” New England Journal of Medicine, vol. 350, no. 9, pp. 913–922, 2004.
[47]  H. B. Gaspar, K. L. Parsley, S. Howe et al., “Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector,” The Lancet, vol. 364, no. 9452, pp. 2181–2187, 2004.
[48]  S. L. Ginn, J. A. Curtin, B. Kramer et al., “Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia,” Medical Journal of Australia, vol. 182, no. 9, pp. 458–463, 2005.
[49]  J. Chinen, J. Davis, S. S. de Ravin et al., “Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency,” Blood, vol. 110, no. 1, pp. 67–73, 2007.
[50]  K. Schwarzwaelder, S. J. Howe, M. Schmidt et al., “Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2241–2249, 2007.
[51]  R. Quinonez and R. E. Sutton, “Lentiviral vectors for gene delivery into cells,” DNA and Cell Biology, vol. 21, no. 12, pp. 937–951, 2002.
[52]  K. El Omari, S. J. Hoosdally, K. Tuladhar et al., “Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex,” Blood, vol. 117, no. 7, pp. 2146–2156, 2011.
[53]  D. J. Curtis and M. McCormack, “The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia,” Clinical Cancer Research, vol. 16, no. 23, pp. 5618–5623, 2010.
[54]  I. Homminga, M. J. Vuerhard, A. W. Langerak, J. Buijs-Gladdines, R. Pieters, and J. P. P. Meijerink, “Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements,” Haematologica, vol. 97, no. 2, pp. 258–261, 2012.
[55]  R. Malumbres, V. Fresquet, J. Roman-Gomez et al., “LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome,” Haematologica, vol. 96, no. 7, pp. 980–986, 2011.
[56]  U. P. Davé, N. A. Jenkins, and N. G. Copeland, “Gene therapy insertional mutagenesis insights,” Science, vol. 303, no. 5656, p. 333, 2004.
[57]  N. B. Woods, V. Bottero, M. Schmidt, C. von Kalle, and I. M. Verma, “Gene therapy: therapeutic gene causing lymphoma,” Nature, vol. 440, no. 7088, p. 1123, 2006.
[58]  U. Modlich, A. Schambach, M. H. Brugman et al., “Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16,” Leukemia, vol. 22, no. 8, pp. 1519–1528, 2008.
[59]  K. Pike-Overzet, D. de Ridder, F. Weerkamp et al., “Gene therapy: Is IL2RG oncogenic in T-cell development?” Nature, vol. 443, no. 7109, p. E5, 2006.
[60]  A. J. Thrasher, H. B. Gaspar, C. Baum et al., “Gene therapy: X-SCID transgene leukaemogenicity,” Nature, vol. 443, no. 7109, pp. E5–E6, 2006.
[61]  A. Fucito, C. Lucchetti, A. Giordano, and G. Romano, “Genetic and epigenetic alterations in breast cancer: What are the perspectives for clinical practice?” International Journal of Biochemistry and Cell Biology, vol. 40, no. 4, pp. 565–575, 2008.
[62]  A. Giordano, A. Fucito, G. Romano, and I. R. Marino, “Carcinogenesis and environment: the cancer stem cell hypothesis and implications for the development of novel therapeutics and diagnostics,” Frontiers in Bioscience, vol. 12, pp. 3475–3482, 2007.
[63]  A. L. Welm, S. Kim, B. E. Welm, and J. M. Bishop, “MET and MYC cooperate in mammary tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4324–4329, 2005.
[64]  D. D. Gan, M. Macaluso, C. Cinti, K. Khalili, and A. Giordano, “How does a normal human cell become a cancer cell?” Journal of Experimental and Clinical Cancer Research, vol. 22, no. 4, pp. 509–516, 2003.
[65]  M. J. Berardi and V. R. Fantin, “Survival of the fittest: metabolic adaptations in cancer,” Current Opinion in Genetics and Development, vol. 21, no. 1, pp. 59–66, 2011.
[66]  G. Romano, “The complex biology of the receptor for the insulin-like growth factor-1,” Drug News and Perspectives, vol. 16, no. 8, pp. 525–531, 2003.
[67]  D. F. Merlo, R. Filiberti, M. Kobernus et al., “Cancer risk and the complexity of the interactions between environmental and host factors: HENVINET interactive diagrams as simple tools for exploring and understanding the scientific evidence,” Environmental Health, vol. 11, supplement 1, Article ID S9, 2012.
[68]  A. Sun, L. Bagella, S. Tutton, G. Romano, and A. Giordano, “From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway,” Journal of Cellular Biochemistry, vol. 102, no. 6, pp. 1400–1404, 2007.
[69]  A. Giordano, A. Rossi, G. Romano, and L. Bagella, “Tumor suppressor pRb2/p130 gene and its derived product Spa310 spacer domain as perspective candidates for cancer therapy,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 403–406, 2007.
[70]  M. H. Sherman, M. Downes, and R. M. Evans, “Nuclear receptors as modulators of the tumor microenvironment,” Cancer Prevention Research, vol. 5, no. 1, pp. 3–10, 2012.
[71]  C. Florean, M. Schnekenburger, C. Grandjenette, M. Dicato, and M. Diederich, “Epigenomics of leukemia: from mechanisms to therapeutic applications,” Epigenomics, vol. 3, no. 5, pp. 581–609, 2011.
[72]  J. Füllgrabe, E. Kavanagh, and B. Joseph, “Histone onco-modifications,” Oncogene, vol. 30, no. 31, pp. 3391–3403, 2011.
[73]  R. Gabriel, R. Eckenberg, A. Paruzynski et al., “Comprehensive genomic access to vector integration in clinical gene therapy,” Nature Medicine, vol. 15, no. 12, pp. 1431–1436, 2009.
[74]  J.-Y. Métais and C. E. Dunbar, “The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy,” Molecular Therapy, vol. 16, no. 3, pp. 439–449, 2008.
[75]  A. Paruzynski, A. Arens, R. Gabriel et al., “Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing,” Nature Protocols, vol. 5, no. 8, pp. 1379–1395, 2010.
[76]  G. Romano, “Recent advances in gene therapy programs: highlights from the 13th Annual Meeting of the American Society of Gene & Cell Therapy,” Drugs of the Future, vol. 35, no. 8, pp. 687–694, 2010.
[77]  A. Deichmann, M. H. Brugman, C. C. Bartholomae et al., “Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy,” Molecular Therapy, vol. 19, no. 11, pp. 2031–2039, 2011.
[78]  A. Paruzynski, H. Glimm, M. Schmidt, and C. von Kalle, “Analysis of the clonal repertoire of gene-corrected cells in gene therapy,” Methods in Enzymology, vol. 507, pp. 59–87, 2012.
[79]  A. Galy and A. J. Thrasher, “Gene therapy for the Wiskott-Aldrich syndrome,” Current Opinion in Allergy and Clinical Immunology, vol. 11, no. 6, pp. 545–550, 2011.
[80]  O. S. Kustikova, U. Modlich, and B. Fehse, “Retroviral insertion site analysis in dominant haematopoietic clones,” Methods in Molecular Biology, vol. 506, pp. 373–390, 2009.
[81]  A. Deichmann, S. Hacein-Bey-Abina, M. Schmidt et al., “Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2225–2232, 2007.
[82]  U. Modlich, O. S. Kustikova, M. Schmidt et al., “Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis,” Blood, vol. 105, no. 11, pp. 4235–4246, 2005.
[83]  O. Kustikova, B. Fehse, U. Modlich et al., “Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking,” Science, vol. 308, no. 5725, pp. 1171–1174, 2005.
[84]  T. Maetzig, M. H. Brugman, S. Bartels et al., “Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells,” Blood, vol. 117, no. 11, pp. 3053–3064, 2011.
[85]  R. S. Mitchell, B. F. Beitzel, A. R. W. Schroder et al., “Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences,” PLoS Biology, vol. 2, no. 8, p. E234, 2004.
[86]  M. K. Lewinski, M. Yamashita, M. Emerman et al., “Retroviral DNA integration: viral and cellular determinants of target-site selection,” PLoS Pathogens, vol. 2, no. 6, p. E60, 2006.
[87]  A. Ciuffi, R. S. Mitchell, C. Hoffmann et al., “Integration site selection by HIV-based vectors in dividing and growth-arrested IMR-90 lung fibroblasts,” Molecular Therapy, vol. 13, no. 2, pp. 366–373, 2006.
[88]  A. R. W. Schr?der, P. Shinn, H. Chen, C. Berry, J. R. Ecker, and F. Bushman, “HIV-1 integration in the human genome favors active genes and local hotspots,” Cell, vol. 110, no. 4, pp. 521–529, 2002.
[89]  S. D. Barr, A. Ciuffi, J. Leipzig, P. Shinn, J. R. Ecker, and F. D. Bushman, “HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry,” Molecular Therapy, vol. 14, no. 2, pp. 218–225, 2006.
[90]  A. C. Bester, M. Schwartz, M. Schmidt et al., “Fragile sites are preferential targets for integrations of MLV vectors in gene therapy,” Gene Therapy, vol. 13, no. 13, pp. 1057–1059, 2006.
[91]  L. F. Maxfield, C. D. Fraize, and J. M. Coffin, “Relationship between retroviral DNA-integration-site selection and host cell transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 5, pp. 1436–1441, 2005.
[92]  G. Romano, “The standpoint of gene therapy programs,” Drug News and Perspectives, vol. 20, no. 5, pp. 335–343, 2007.
[93]  B. Moldt, S. R. Yant, P. R. Andersen, M. A. Kay, and J. G. Mikkelsen, “Cis-acting gene regulatory activities in the terminal regions of Sleeping Beauty DNA transposon-based vectors,” Human Gene Therapy, vol. 18, no. 12, pp. 1193–1204, 2007.
[94]  J. U. Appelt, F. A. Giordano, M. Ecker et al., “QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis,” Gene Therapy, vol. 16, no. 7, pp. 885–893, 2009.
[95]  N. C. Popescu, “Genetic alterations in cancer as a result of breakage at fragile sites,” Cancer Letters, vol. 192, no. 1, pp. 1–17, 2003.
[96]  D. G. Miller, L. M. Petek, and D. W. Russell, “Adeno-associated virus vectors integrate at chromosome breakage sites,” Nature Genetics, vol. 36, no. 7, pp. 767–773, 2004.
[97]  C. H. Freudenreich, “Chromosome fragility: molecular mechanisms and cellular consequences,” Frontiers in Bioscience, vol. 12, pp. 4911–4924, 2007.
[98]  H. M. Padilla-Nash, K. Heselmeyer-Haddad, D. Wangsa et al., “Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms,” Genes Chromosomes and Cancer, vol. 30, no. 4, pp. 349–363, 2001.
[99]  D. I. Smith, S. McAvoy, Y. Zhu, and D. S. Perez, “Large common fragile site genes and cancer,” Seminars in Cancer Biology, vol. 17, no. 1, pp. 31–41, 2007.
[100]  L. W. Dillon, A. A. Burrow, and Y. H. Wang, “DNA instability at chromosomal fragile sites in cancer,” Current Genomics, vol. 11, no. 5, pp. 326–337, 2010.
[101]  D. Bystricka, I. Sarova, Z. Zemanova et al., “Recurrent chromosomal breakpoints in patients with myelodysplastic syndromes and complex karyotype versus fragile sites,” Leukemia Research, vol. 36, no. 6, pp. e125–e127, 2012.
[102]  A. Fungtammasan, E. Walsh, F. Chiaromonte, K. A. Eckert, and K. D. Makova, “A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome?” Genome Research, vol. 22, no. 6, pp. 993–1005, 2012.
[103]  K. L. Dall, C. G. Scarpini, I. Roberts et al., “Characterization of naturally occurring HPV16 integration sites isolated from cervical keratinocytes under noncompetitive conditions,” Cancer Research, vol. 68, no. 20, pp. 8249–8259, 2008.
[104]  G. Romano, “Viral oncology and development of preventive vaccines,” Drugs of the Future, vol. 32, no. 4, pp. 367–373, 2007.
[105]  M. Schmitz, C. Driesch, K. Beer-Grondke, L. Jansen, I. B. Runnebaum, and M. Dürst, “Loss of gene function as a consequence of human papillomavirus DNA integration,” International Journal of Cancer, vol. 131, no. 5, pp. E593–E602, 2012.
[106]  L. Nambaru, B. Meenakumari, R. Swaminathan, and T. Rajkumar, “Prognostic significance of HPV physical status and integration sites in cervical cancer,” Asian Pacific Journal of Cancer Prevention, vol. 10, no. 3, pp. 355–360, 2009.
[107]  W. J. Luo, T. Takakuwa, M. F. Ham et al., “Epstein-Barr virus is integrated between REL and BCL-11A in American Burkitt lymphoma cell line (NAB-2),” Laboratory Investigation, vol. 84, no. 9, pp. 1193–1199, 2004.
[108]  A. Jox, C. Rohen, G. Belge et al., “Integration of Epstein-Barr virus in Burkitt's lymphoma cells leads to a region of enhanced chromosome instability,” Annals of Oncology, vol. 8, supplement 2, pp. S131–S135, 1997.
[109]  M. A. Feitelson and J. Lee, “Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis,” Cancer Letters, vol. 252, no. 2, pp. 157–170, 2007.
[110]  F. Zhang, S. I. Thornhill, S. J. Howe et al., “Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells,” Blood, vol. 110, no. 5, pp. 1448–1457, 2007.
[111]  E. Almarza, F. Zhang, G. Santilli et al., “Correction of SCID-X1 using an enhancerless vav promoter,” Human Gene Therapy, vol. 22, no. 3, pp. 263–270, 2011.
[112]  S. Knight, F. Zhang, U. Mueller-Kuller et al., “Safer, silencing-resistant lentiviral vectors: optimization of the ubiquitous chromatin-opening element through elimination of aberrant splicing,” Journal of Virology, vol. 86, no. 17, pp. 9088–9095, 2012.
[113]  á. González-Murillo, M. L. Lozano, L. álvarez et al., “Development of lentiviral vectors with optimized transcriptional activity for the gene therapy of patients with fanconi anemia,” Human Gene Therapy, vol. 21, no. 5, pp. 623–630, 2010.
[114]  J. Soulier, “Fanconi anemia,” American Society of Hematology Education Program, pp. 492–497, 2011.
[115]  S. Zhou, D. Mody, S. S. DeRavin et al., “A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells,” Blood, vol. 116, no. 6, pp. 900–908, 2010.
[116]  N. Uchida, K. N. Washington, C. J. Lap, M. M. Hsieh, and J. F. Tisdale, “Chicken HS4 insulators have minimal barrier function among progeny of human hematopoietic cells transduced with an HIV1-based lentiviral vector,” Molecular Therapy, vol. 19, no. 1, pp. 133–139, 2011.
[117]  S. Rivella, J. A. Callegari, C. May, C. W. Tan, and M. Sadelain, “The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites,” Journal of Virology, vol. 74, no. 10, pp. 4679–4687, 2000.
[118]  D. W. Emery, “The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors,” Human Gene Therapy, vol. 22, no. 6, pp. 761–774, 2011.
[119]  A. Schambach, M. Galla, T. Maetzig, R. Loew, and C. Baum, “Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors,” Molecular Therapy, vol. 15, no. 6, pp. 1167–1173, 2007.
[120]  M. P. Felder, A. Eychene, D. Laugier, M. Marx, P. Dezelee, and G. Calothy, “Steps and mechanisms of oncogene transduction by retroviruses,” Folia Biologica, vol. 40, no. 5, pp. 225–235, 1994.
[121]  C. Stocking, R. Kollek, U. Bergholz, and W. Ostertag, “Long terminal repeat sequences impart hematopoietic transformation properties to the myeloproliferative sarcoma virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 17, pp. 5746–5750, 1985.
[122]  J. S. Lipsick and D. M. Wang, “Transformation by v-Myb,” Oncogene, vol. 18, no. 19, pp. 3047–3055, 1999.
[123]  A. K. Zaiss, S. Son, and L. J. Chang, “RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy,” Journal of Virology, vol. 76, no. 14, pp. 7209–7219, 2002.
[124]  G. M. Gilmartin, E. S. Fleming, and J. Oetjen, “Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR,” EMBO Journal, vol. 11, no. 12, pp. 4419–4428, 1992.
[125]  N. J. Philpott and A. J. Thrasher, “Use of nonintegrating lentiviral vectors for gene therapy,” Human Gene Therapy, vol. 18, no. 6, pp. 483–489, 2007.
[126]  B. Hu, H. Yang, B. Dai, A. Tai, and P. Wang, “Nonintegrating lentiviral vectors can effectively deliver ovalbumin antigen for induction of antitumor immunity,” Human Gene Therapy, vol. 20, no. 12, pp. 1652–1664, 2009.
[127]  D. R. M. Negri, R. Bona, Z. Michelini et al., “Transduction of human antigen-presenting cells with integrase-defective lentiviral vector enables functional expansion of primed antigen-specific CD8+ T cells,” Human Gene Therapy, vol. 21, no. 8, pp. 1029–1035, 2010.
[128]  S. Philippe, C. Sarkis, M. Barkats et al., “Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17684–17689, 2006.
[129]  J. Vargas, G. L. Gusella, V. Najfeld, M. E. Klotman, and A. Cara, “Novel integrase-defective lentiviral episomal vectors for gene transfer,” Human Gene Therapy, vol. 15, no. 4, pp. 361–372, 2004.
[130]  A. V. Terskikh, M. A. Ershler, N. J. Drize, I. N. Nifontova, and J. L. Chertkov, “Long-term persistence of a nonintegrated lentiviral vector in mouse hematopoietic stem cells,” Experimental Hematology, vol. 33, no. 8, pp. 873–882, 2005.
[131]  L. Apolonia, S. N. Waddington, C. Fernandes et al., “Stable gene transfer to muscle using non-integrating lentiviral vectors,” Molecular Therapy, vol. 15, no. 11, pp. 1947–1954, 2007.
[132]  K. Karwacz, S. Mukherjee, L. Apolonia et al., “Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy,” Journal of Virology, vol. 83, no. 7, pp. 3094–3103, 2009.
[133]  S. J. Nightingale, R. P. Hollis, K. A. Pepper et al., “Transient gene expression by nonintegrating lentiviral vectors,” Molecular Therapy, vol. 13, no. 6, pp. 1121–1132, 2006.
[134]  B. Kantor, M. Bayer, H. Ma et al., “Notable reduction in illegitimate integration mediated by a PPT-deleted, nonintegrating lentiviral vector,” Molecular Therapy, vol. 19, no. 3, pp. 547–556, 2011.
[135]  R. J. Yá?ez-Mu?oz, K. S. Balaggan, A. MacNeil et al., “Effective gene therapy with nonintegrating lentiviral vectors,” Nature Medicine, vol. 12, no. 3, pp. 348–353, 2006.
[136]  A. Baiker, C. Maercker, C. Piechaczek et al., “Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix,” Nature Cell Biology, vol. 2, no. 3, pp. 182–184, 2000.
[137]  M. M. P. Lufino, R. Manservigi, and R. Wade-Martins, “An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency,” Nucleic Acids Research, vol. 35, no. 15, article e98, 2007.
[138]  E. P. Papapetrou, P. G. Ziros, I. D. Micheva, N. C. Zoumbos, and A. Athanassiadou, “Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element,” Gene Therapy, vol. 13, no. 1, pp. 40–51, 2006.
[139]  M. Dhanasekaran, S. Negi, and Y. Sugiura, “Designer zinc finger proteins: tools for creating artificial DNA-binding functional proteins,” Accounts of Chemical Research, vol. 39, no. 1, pp. 45–52, 2006.
[140]  C. L. Dent, G. Lau, E. A. Drake, A. Yoon, C. C. Case, and P. D. Gregory, “Regulation of endogenous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors,” Gene Therapy, vol. 14, no. 18, pp. 1362–1369, 2007.
[141]  S. Dion, M. V. Demattéi, and S. Renault, “Zinc finger proteins: tools for site-specific correction or modification of the genome,” Medecine/Sciences, vol. 23, no. 10, pp. 834–839, 2007.
[142]  P. J. Verschure, A. E. Visser, and M. G. Rots, “Step out of the groove: epigenetic gene control systems and engineered transcription factors,” Advances in Genetics, vol. 56, pp. 163–204, 2006.
[143]  F. Paques and P. Duchateau, “Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy,” Current Gene Therapy, vol. 7, no. 1, pp. 49–66, 2007.
[144]  S. Iuchi, “Three classes of C2H2 zinc finger proteins,” Cellular and Molecular Life Sciences, vol. 58, no. 4, pp. 625–635, 2001.
[145]  J. Smith, S. Grizot, S. Arnould et al., “A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences,” Nucleic Acids Research, vol. 34, no. 22, article e149, 2006.
[146]  S. Arnould, C. Perez, J. P. Cabaniols et al., “Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells,” Journal of Molecular Biology, vol. 371, no. 1, pp. 49–65, 2007.
[147]  S. Arnould, C. Delenda, S. Grizot et al., “The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy,” Protein Engineering, Design and Selection, vol. 24, no. 1-2, pp. 27–31, 2011.
[148]  P. Redondo, J. Prieto, I. G. M?oz et al., “Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases,” Nature, vol. 456, no. 7218, pp. 107–111, 2008.
[149]  K. H. Kraemer, M. M. Lee, and J. Scotto, “Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases,” Archives of Dermatology, vol. 123, no. 2, pp. 241–250, 1987.
[150]  M. Fenina, D. Simon-Chazottes, S. Vandormael-Pournin et al., “I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct Locus in mouse embryonic stem cells,” PLoS One, vol. 7, no. 6, Article ID e39895, 2012.
[151]  N. Bennardo and J. M. Stark, “ATM limits incorrect end utilization during non- homologous end joining of multiple chromosome breaks,” PLoS Genetics, vol. 6, no. 11, Article ID e1001194, 2010.
[152]  S. Grizot, J. C. Epinat, S. Thomas et al., “Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds,” Nucleic Acids Research, vol. 38, no. 6, Article ID gkp1171, pp. 2006–2018, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133