全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Diagnostic Role of 18F-FECH-PET/CT Compared with Bone Scan in Evaluating the Prostate Cancer Patients Referring with Biochemical Recurrence

DOI: 10.5402/2012/815234

Full-Text   Cite this paper   Add to My Lib

Abstract:

18F-FECH-PET/CT has been proved to be an imaging agent for prostate carcinoma. However, its role in detecting the bone metastases is still blurred owing to the lack of related studies. The purpose of our study was to assess the efficacy of PET with 18F-ethylcholine in assessing the bone status and to compare the results with that of conventional bone scan findings. For this purpose, we selected 37 patients (mean age ), who had been referred for restaging purposes due to biochemical recurrences and underwent both 18F-FECH-PET/CT and bone scan in a short interval. Generally 18 patients out 37 patients referred with biochemical relapse were confirmed to have bone involvement. From 18 confirmed bone involvement cases, 18F-FECH-PET/CT identified correctly the bone involvement in 15 cases with overall sensitivity of 83.3%. On the other hand, bone scan identified 17 out of 18 confirmed cases with overall sensitivity of 94.4%. The lesion-related results show that the sensitivity of each investigation differs with the anatomical regions, and by comparing both results, 18F-FECH-PET/CT was mostly superior to bone scan; however, without a statistical significance ( ). In conclusion, no significant gain in sensitivity was achieved using bone scan compared with 18F-FECH-PET/CT. 1. Introduction Carcinoma of the prostate is the most common malignancy in men with increased incidence rates owing to the population ageing and the improvement of diagnostic procedures. The early detection of the bone metastases is of value in making decision regarding the treatment plan, which may vary extremely according to the bone status. The likelihood of the bone metastases at the first diagnosis varies with the histological score and serum level of prostate-specific antigen, and it is possible to some extent to estimate the degree of tumor spread in the light of the PSA value. Bone involvement is much less frequently involved with low PSA level, so that the bone staging is not recommended with PSA less than 10?ng/mL, except if there are known bone disorders which may later cause false positive findings [1–3]. However, in patients with PSA relapse after primary therapy it is not easy to be guessed based on PSA values whether the bone involvement or another involvement is behind a PSA rising. In established skeletal involvement, there is a need of effective imaging method to monitor the status progress. Bone scan is the widely used screening technique for assessing the bone status in the most malignancies, and it shows mostly high sensitivity in detecting the bone involvement. However,

References

[1]  H. J. Lavery, J. S. Brajtbord, A. W. Levinson, F. Nabizada-Pace, M. E. Pollard, and D. B. Samadi, “Unnecessary imaging for the staging of low-risk prostate cancer is common,” Urology, vol. 77, no. 2, pp. 274–278, 2011.
[2]  A. Zissimopoulos, A. Bantis, K. Stellos, G. Petrakis, and D. Matthaios, “Association between bone scintigraphy and serum levels of procollagen (I) and PSA in the detection of bone disease in prostate cancer patients,” Journal of B.U.ON., vol. 13, no. 1, pp. 69–74, 2008.
[3]  A. Zissimopoulos, C. Stellos, G. Petrakis, and N. Baziotis, “Correlation of procollagen (I) with prostate specific antigen and bone scan for the diagnosis of bone metastases in patients with prostate carcinoma,” Hellenic Journal of Nuclear Medicine, vol. 7, no. 3, pp. 162–167, 2004.
[4]  T. Hara, N. Kosaka, and H. Kishi, “Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging,” Journal of Nuclear Medicine, vol. 43, no. 2, pp. 187–199, 2002.
[5]  M. Beheshti, L. Imamovic, G. Broinger et al., “18F choline PET0/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients,” Radiology, vol. 254, no. 3, pp. 925–933, 2010.
[6]  A. J. Breeuwsma, J. Pruim, M. M. Jongen et al., “In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 6, pp. 668–673, 2005.
[7]  Q. H. Zheng, T. A. Gardner, S. Raikwar et al., “[11C]Choline as a PET biomarker for assessment of prostate cancer tumor models,” Bioorganic and Medicinal Chemistry, vol. 12, no. 11, pp. 2887–2893, 2004.
[8]  T. Hara, N. Kosaka, and H. Kishi, “PET imaging of prostate cancer using carbon-11-choline,” Journal of Nuclear Medicine, vol. 39, no. 6, pp. 990–995, 1998.
[9]  T. ?zülker, A. Kü?ük?z Uzun, F. ?zülker, and T. ?zpa?ac, “Comparison of 18F-FDG-PET/CT with 99mTc-MDP bone scintigraphy for the detection of bone metastases in cancer patients,” Nuclear Medicine Communications, vol. 31, no. 6, pp. 597–603, 2010.
[10]  H. Kato, T. Miyazaki, M. Nakajima et al., “Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas,” Anticancer Research, vol. 25, no. 6, pp. 4439–4444, 2005.
[11]  G. S. P. Meirelles, H. Sch?der, G. C. Ravizzini et al., “Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer,” Clinical Cancer Research, vol. 16, no. 24, pp. 6093–6099, 2010.
[12]  X. Cheng, Y. Li, Z. Xu, L. Bao, D. Li, and J. Wang, “Comparison of 18F-FDG PET/CT with bone scintigraphy for detection of bone metastasis: a meta-analysis,” Acta Radiologica, vol. 52, no. 7, pp. 779–787, 2011.
[13]  B. P. Tiwari, S. Jangra, N. Nair, H. B. Tongaonkar, and S. Basu, “Complimentary role of FDG-PET imaging and skeletal scintigraphy in the evaluation of patients of prostate carcinoma,” Indian Journal of Cancer, vol. 47, no. 4, pp. 385–390, 2010.
[14]  M. Beheshti, R. Vali, P. Waldenberger et al., “Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 10, pp. 1766–1774, 2008.
[15]  M. McCarthy, T. Siew, A. Campbell et al., “18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 1, pp. 14–22, 2011.
[16]  M. Beheshti, W. Langsteger, and I. Fogelman, “Prostate cancer: role of SPECT and PET in imaging bone metastases,” Seminars in Nuclear Medicine, vol. 39, no. 6, pp. 396–407, 2009.
[17]  G. Savelli, L. Maffioli, M. Maccauro, E. de Deckere, and E. Bombardieri, “Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions,” Quarterly Journal of Nuclear Medicine, vol. 45, no. 1, pp. 27–37, 2001.
[18]  K. Kato, K. Nagahama, Y. Yagibashi, M. Yamamoto, H. Kanamaru, and H. Hirata, “A case of prostate cancer with diseminated carcinomatosis of bone marrow which responded to zoledronic acid,” Acta Urologica Japonica, vol. 57, no. 6, pp. 331–335, 2011.
[19]  A. Aydin, J. Q. Yu, H. Zhuang, and A. Alavi, “Detection of bone marrow metastases by FDG-PET and missed by bone scintigraphy in widespread melanoma,” Clinical Nuclear Medicine, vol. 30, no. 9, pp. 606–607, 2005.
[20]  M. Beheshti, R. Vali, P. Waldenberger et al., “The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT,” Molecular Imaging and Biology, vol. 11, no. 6, pp. 446–454, 2009.
[21]  J. J. Pollen, K. F. Witztum, and W. L. Ashburn, “The flare phenomenon on radionuclide bone scan in metastatic prostate cancer,” American Journal of Roentgenology, vol. 142, no. 4, pp. 773–776, 1984.
[22]  R. E. Coleman, G. Mashiter, K. B. Whitaker, D. W. Moss, R. D. Rubens, and I. Fogelman, “Bone scan flare predicts successful systemic therapy for bone metastases,” Journal of Nuclear Medicine, vol. 29, no. 8, pp. 1354–1359, 1988.
[23]  J. A. Schneider, C. R. Divgi, A. M. Scott et al., “Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer,” Journal of Nuclear Medicine, vol. 35, no. 11, pp. 1748–1752, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133