全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

Evaluation of Acute Locoregional Toxicity in Patients with Breast Cancer Treated with Adjuvant Radiotherapy in Combination with Pazopanib

DOI: 10.5402/2012/896202

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. The purpose of this study was to analyze acute locoregional toxicity in patients with breast cancer receiving concurrent pazopanib and RT. Materials and Methods. Patients with breast cancer who received pazopanib in combination with radiation were identified and matched (2?:?1) to patients with breast cancer who did not receive pazopanib by use of chemotherapy, radiation field design, and radiation dose. Toxicity was scored by the Common Terminology Criteria for Adverse Events and statistical analysis was performed. Results. Grade 1 or 2 radiation dermatitis was seen in 100% and 84% of pazopanib and RT patients and matched controls respectively (P = NS). None of the patients receiving pazopanib and RT experienced ≥ grade 3 toxicity within the irradiated volume; three (16%) matched patients experienced a grade 3 skin reaction (P = 0.05). Interestingly, grade 1 or 2 hyperpigmentation was seen in 17% of pazopanib and RT patients and 60% of matched controls (P = 0.005). Conclusion. The addition of concurrent pazopanib and RT when treating the intact breast, chest wall, and associated nodal regions in breast cancer seems to be safe and well tolerated. 1. Introduction The response of a tumor to ionizing radiation is dependent on several factors both intrinsic and extrinsic to the cancer cells. Intrinsic mechanisms of radioresistance include alteration of gene and protein expression resulting in selection of resistant variants [1]. The extrinsic tumor microenvironment varies anisotropically within a mass and is characterized by oxygen depletion, acidosis, glucose deprivation, and high lactate levels [2, 3]. Hypoxic cells are known to be resistant to the effects of radiation as oxygen is required to fix damage conferred by free radicals created by the ionizing radiation. Severely hypoxic cells can have an oxygen enhancement ratio of 2-3; this means they require 2-3 times the radiation dose of well-oxygenated cells for the same level of killing. The tumor microenvironment is shaped by both the metabolic activity of cancer cells and circulation. For growth and survival, tumor cells and stroma secrete proangiogenic factors including FGF, PDGF, and the predominant factor VEGF, which result in endothelial cell migration and proliferation. This helps create new vessels often which are poorly functional with sluggish blood flow since VEGF causes vessel leakage and is expressed out of proportion to other angiogenic factors. This may result in persistent areas of hypoxia [1]. Therapies targeted at VEGF and other angiogenic factors are an active area of

References

[1]  J. Karar and A. Maity, “Modulating the tumor microenvironment to increase radiation responsiveness,” Cancer Biology and Therapy, vol. 8, no. 21, pp. 1994–2001, 2009.
[2]  P. Vaupel and L. Harrison, “Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response,” The Oncologist, vol. 9, supplement 5, pp. 4–9, 2004.
[3]  P. Vaupel, “Tumor microenvironmental physiology and its implications for radiation oncology,” Seminars in Radiation Oncology, vol. 14, no. 3, pp. 198–206, 2004.
[4]  P. E. Huber, M. Bischof, J. Jenne et al., “Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy,” Cancer Research, vol. 65, no. 9, pp. 3643–3655, 2005.
[5]  R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, no. 5706, pp. 58–62, 2005.
[6]  F. A. B. Schutz, T. K. Choueiri, and C. N. Sternberg, “Pazopanib: clinical development of a potent anti-angiogenic drug,” Critical Reviews in Oncology/Hematology, vol. 77, no. 3, pp. 163–171, 2011.
[7]  C. Nieder, N. Wiedenmann, N. Andratschke, and M. Molls, “Current status of angiogenesis inhibitors combined with radiation therapy,” Cancer Treatment Reviews, vol. 32, no. 5, pp. 348–364, 2006.
[8]  S. Goyal, M. S. Rao, A. Khan, L. Huzzy, C. Green, and B. G. Haffty, “Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with bevacizumab,” International Journal of Radiation Oncology Biology Physics, vol. 79, no. 2, pp. 408–413, 2011.
[9]  F. A. B. Schutz, T. K. Choueiri, and C. N. Sternberg, “Pazopanib: clinical development of a potent anti-angiogenic drug,” Critical Reviews in Oncology/Hematology, vol. 77, no. 3, pp. 163–171, 2011.
[10]  L. Albiges, M. Salem, B. Rini, and B. Escudier, “Vascular endothelial growth factor-targeted therapies in advanced renal cell carcinoma,” Hematology/Oncology Clinics of North America, vol. 25, no. 4, pp. 813–833, 2011.
[11]  K. Sideras, M. E. Menefee, J. K. Burton, C. Erlichman, K. C. Bible, and S. P. Ivy, “Profound hair and skin hypopigmentation in an African American woman treated with the multi-targeted tyrosine kinase inhibitor pazopanib,” Journal of Clinical Oncology, vol. 28, no. 19, pp. e312–e313, 2010.
[12]  I. Katayama, M. Ashida, A. Maeda, K. Eishi, H. Murota, and S. J. Bae, “Open trial of topical tacalcitol [1α24(OH)2D3] and solar irradiation for vitiligo vulgaris: upregulation of c-Kit mRNA by cultured melanocytes,” European Journal of Dermatology, vol. 13, no. 4, pp. 372–376, 2003.
[13]  N. S. Vasudev and J. M. G. Larkin, “Tyrosine kinase inhibitors in the treatment of advanced renal cell carcinoma: focus on pazopanib,” Clinical Medicine Insights, vol. 5, pp. 333–342, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133