全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

The Role of Radiotherapy and Chemotherapy in the Treatment of Primary Adult High Grade Gliomas: Assessment of Patients for These Treatment Approaches and the Common Immediate Side Effects

DOI: 10.5402/2012/902178

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gliomas are the commonest primary brain tumours in adults. They are usually classified and graded according to the criteria by the World Health Organisation. High-grade gliomas are the most malignant primary brain tumours. Conventional therapies include surgery, radiotherapy, and chemotherapy. The tumours often demonstrate high levels of resistance to these conventional therapies, and in spite of treatment advances the prognosis remains poor. 1. Introduction Primary brain tumours are tumours that arise within the brain tissue and the environs while secondary tumours originate from elsewhere in the body and spread to the brain [1]. The main functional cell of the brain is called the neuron, while glial cells make up the supporting structures. These glial cells are of different types, namely, the oligodendrocytes which make myelin, astrocytes which take part in neurotransmission and neuronal metabolism, and the ependyma cells which line the ventricles and central canal of the spinal cord. Tumours arising from glial cells are called gliomas. These tumours are the most frequent primary tumours of the central nervous system [2, 3]. The World Health Organisation (WHO) classifies astrocytomas into four grades, depending on the microscopic pattern of the tumour, which include increased cellularity, nuclear atypia, mitosis, and vascular proliferation/necrosis. The different characteristics demonstrate the invasiveness and rate of growth of the various grades. WHO Grade I (Pilocytic astrocytoma) is that which does not demonstrate any of the microscopic patterns. WHO Grade II (diffuse astrocytoma) is characterized by only atypia. WHO Grade III (anaplastic astrocytoma) shows both atypia and mitosis. WHO Grade IV (glioblastoma multiforme) shows areas of necrosis and/or vascular proliferation [1, 4]. The tumours in WHO Grades I and II are referred to as low-grade gliomas while those in grades III and IV are called high-grade gliomas (HGG). By far, the HGG are the commonest primary brain tumours in adults [5, 6]. They can develop de novo or result from a progression of the low-grade gliomas [7–9]. Seventy percent of the 22,500 new cases of malignant primary brain tumours diagnosed in adults in the United States are due to HGG exhibiting an incidence of 5 per 100,000/per year [4, 10]. The most common type of HGG is glioblastoma accounting for 80% of the malignant gliomas while the Oligodendrogliomas constitute about 20% of glial tumours [11]. Males are more frequently affected than females with a ratio of 3?:?2 [3, 11]. A possible protective effect of the female

References

[1]  J. Rees, S. Brander, R. Howard, et al., “Neuro-oncology,” in Neurology, A Queen Square Textbook, C. Clarke, R. Howard, M. Rossor, and S. Shorvon, Eds., pp. 771–822, Blackwell Publishing, Oxford, UK, 2009.
[2]  D. Figarella-Branger, C. Colin, B. Coulibaly et al., “Histological and molecular classification of Gliomas,” Revue Neurologique, vol. 164, no. 6-7, pp. 505–515, 2008.
[3]  N. A. Butowski and S. M. Chang, “Glial tumors: the current state of scientific knowledge,” Clinical Neurosurgery, vol. 53, pp. 106–113, 2006.
[4]  P. Y. Wen and S. Kesari, “Malignant Gliomas in adults,” The New England Journal of Medicine, vol. 359, no. 5, pp. 492–507, 2008.
[5]  A. A. Brandes and S. Monfardini, “Treatment of elderly patients with high grade Gliomas,” Seminars in Oncology, vol. 30, no. 6, supplement 19, pp. 58–62, 2003.
[6]  J. S. Frenel, M. Botti, D. Loussouarn, and M. Campone, “Prognostic and predictive factors for Gliomas in adults,” Bulletin du Cancer, vol. 96, no. 4, pp. 357–367, 2009.
[7]  A. Perry, “Pathology of low-grade Gliomas: an update of emerging concepts,” Neuro-Oncology, vol. 5, no. 3, pp. 168–178, 2003.
[8]  C. Sarkar, A. Jain, and V. Suri, “Current concepts in the pathology and genetics of Gliomas,” Indian Journal of Cancer, vol. 46, no. 2, pp. 108–119, 2009.
[9]  P. Kleihues and H. Ohgaki, “Primary and secondary glioblastomas: from concept to clinical diagnosis,” Neuro-Oncology, vol. 1, no. 1, pp. 44–51, 1999.
[10]  N. Laperriere, L. Zuraw, and G. Cairncross, “Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review,” Radiotherapy and Oncology, vol. 64, no. 3, pp. 259–273, 2002.
[11]  L. M. DeAngelis, “Brain tumors,” The New England Journal of Medicine, vol. 344, no. 2, pp. 114–123, 2001.
[12]  S. M. Chang, I. F. Parney, W. Huang et al., “Patterns of care for adults with newly diagnosed malignant glioma,” Journal of the American Medical Association, vol. 293, no. 5, pp. 557–564, 2005.
[13]  F. Laigle-Donadey and M. Sanson, “Pattern of care of high-grade Gliomas,” Revue du Praticien, vol. 56, no. 16, pp. 1779–1786, 2006.
[14]  P. Y. Wen and P. M. Black, “Clinical presentation, evaluation and preoperative preparetion of the patient,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 328–336, WB Saunders, Philadelphia, Pa, USA, 1999.
[15]  D. Croteau and T. Mikkelsen, “Adults with newly diagnosed high-grade Gliomas,” Current Treatment Options in Oncology, vol. 2, no. 6, pp. 507–515, 2001.
[16]  R. D. Kortmann, B. Jeremic, M. Weller, L. Plasswilm, and M. Bamberg, “Radiochemotherapy of malignant glioma in adults: clinical experiences,” Strahlentherapie und Onkologie, vol. 179, no. 4, pp. 219–232, 2003.
[17]  D. C. Shrieve, D. F. Deen, and D. A. Larson, “Basic principles of radiobiology and radiotherapy,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 464–479, WB Saunders, Philadelphia, Pa, USA, 1999.
[18]  J. Buatti, T. C. Ryken, M. C. Smith et al., “Radiation therapy of pathologically confirmed newly diagnosed glioblastoma in adults,” Journal of Neuro-Oncology, vol. 89, no. 3, pp. 313–337, 2008.
[19]  W. J. Curran, C. B. Scott, and S. A. Leibel, “Issues in the use of conventional and altered fractionation radiation therapy for paediatric and adult Gliomas,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 480–488, WB Saunders, Philadelphia, Pa, USA, 1999.
[20]  C. Irwin, M. Hunn, G. Purdie, and D. Hamilton, “Delay in radiotherapy shortens survival in patients with high grade glioma,” Journal of Neuro-Oncology, vol. 85, no. 3, pp. 339–343, 2007.
[21]  N. M. Bleehen and S. P. Stenning, “A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma,” British Journal of Cancer, vol. 64, no. 4, pp. 769–774, 1991.
[22]  M. Kita, T. Okawa, M. Tanaka, and M. Ikeda, “Radiotherapy of malignant glioma—prospective randomized clinical study of whole brain vs local irradiation,” Gan No Rinsho, vol. 35, no. 11, pp. 1289–1294, 1989.
[23]  R. R. Sharma, D. P. Singh, A. Pathak et al., “Local control of high-grade Gliomas with limited volume irradiation versus whole brain irradiation,” Neurology India, vol. 51, no. 4, pp. 512–517, 2003.
[24]  M. D. Prados, W. M. Wara, P. K. Sneed et al., “Phase III trial of accelerated hyperfractionation with or without difluromethylornithine (DFMO) versus standard fractionated radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme,” International Journal of Radiation Oncology Biology Physics, vol. 49, no. 1, pp. 71–77, 2001.
[25]  H. Keim, P. C. Potthoff, K. Schmidt, M. Schiebusch, A. Neiss, and K. R. Trott, “Survival and quality of life after continuous accelerated radiotherapy of glioblastomas,” Radiotherapy and Oncology, vol. 9, no. 1, pp. 21–26, 1987.
[26]  B. Glinski, “Postoperative hypofractionated radiotherapy versus conventionally fractionated radiotherapy in malignant Gliomas. A preliminary report on a randomized trial,” Journal of Neuro-Oncology, vol. 16, no. 2, pp. 167–172, 1993.
[27]  M. Y. Sayin, B. Kaya, B. H. Bakkal, K. Altundag, and M. B. Altundag, “The results of hypofractionated radiotherapy in 31 patients with high-grade Gliomas,” Medical Oncology, vol. 24, no. 4, pp. 379–383, 2007.
[28]  M. C. C. M. Hulshof, E. C. Schimmel, D. A. Bosch, and D. González González, “Hypofractionation in glioblastoma multiforme,” Radiotherapy and Oncology, vol. 54, no. 2, pp. 143–148, 2000.
[29]  P. Y. Wen, E. A. Iii, P. M. Black, et al., “Long term results of stereotactic brachytherapy used in the initial treatment with glioblastomas,” Cancer, vol. 73, no. 12, pp. 3029–3036, 1994.
[30]  P. K. Sneed, P. R. Stauffer, M. W. McDermott et al., “Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme,” International Journal of Radiation Oncology Biology Physics, vol. 40, no. 2, pp. 287–295, 1998.
[31]  D. Mathieu and D. Fortin, “The role of chemotherapy in the treatment of malignant astrocytomas,” Canadian Journal of Neurological Sciences, vol. 33, no. 2, pp. 127–140, 2006.
[32]  M. Huncharek and J. Muscat, “Treatment of recurrent high grade astrocytoma; results of a systematic review of 1415 patients,” Anticancer Research, vol. 18, no. 2, pp. 1303–1311, 1998.
[33]  V. A. Levin, P. Silver, J. Hannigan et al., “Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine, and vincristine (PCV) over BCNU for anaplastic Gliomas: NCOG 6G61 final report,” International Journal of Radiation Oncology Biology Physics, vol. 18, no. 2, pp. 321–324, 1990.
[34]  M. D. Prados, C. Scott, W. J. Curran, D. F. Nelson, S. Leibel, and S. Kramer, “Procarbazine, lomustine, and vincristine (PCV) chemotherapy for anaplastic astrocytoma: a retrospective review of radiation therapy oncology group protocols comparing survival with carmustine or PCV adjuvant chemotherapy,” Journal of Clinical Oncology, vol. 17, no. 11, pp. 3389–3395, 1999.
[35]  M. E. Hegi, A. C. Diserens, T. Gorlia et al., “MGMT gene silencing and benefit from temozolomide in glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 997–1003, 2005.
[36]  D. Osoba, M. Brada, W. K. A. Yung, and M. Prados, “Health-related quality of life in patients treated with temozolomide versus procarbazine for recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 18, no. 7, pp. 1481–1491, 2000.
[37]  W. K. A. Yung, R. E. Albright, J. Olson et al., “A phase II study of temozolemide vs. procarbazine in patients with glioblastoma multiforme at first relapse,” British Journal of Cancer, vol. 83, no. 5, pp. 588–593, 2000.
[38]  R. Stupp, W. P. Mason, M. J. van den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005.
[39]  R. Stupp, P. Y. Dietrich, S. O. Kraljevic et al., “Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide,” Journal of Clinical Oncology, vol. 20, no. 5, pp. 1375–1382, 2002.
[40]  R. E. Warnick, M. D. Prados, E. E. Mack et al., “A phase II study of intravenous carboplatin for the treatment of recurrent Gliomas,” Journal of Neuro-Oncology, vol. 19, no. 1, pp. 69–74, 1994.
[41]  K. R. Hande, “Etoposide: four decades of development of a topoisomerase II inhibitor,” European Journal of Cancer, vol. 34, no. 10, pp. 1514–1521, 1998.
[42]  E. Franceschi, G. Cavallo, L. Scopece et al., “Phase II trial of carboplatin and etoposide for patients with recurrent high-grade glioma,” British Journal of Cancer, vol. 91, no. 6, pp. 1038–1044, 2004.
[43]  M. W. Gross, R. Altscher, M. Brandtner et al., “Open-label simultaneous radio-chemotherapy of glioblastoma multiforme with topotecan in adults,” Clinical Neurology and Neurosurgery, vol. 107, no. 3, pp. 207–213, 2005.
[44]  M. C. Chamberlain and P. A. Kormanik, “Salvage chemotherapy with paclitaxel for recurrent primary brain tumors,” Journal of Clinical Oncology, vol. 13, no. 8, pp. 2066–2071, 1995.
[45]  M. D. Prados, S. C. Schold, A. M. Spence et al., “Phase II study of paclitaxel in patients with recurrent malignant glioma,” Journal of Clinical Oncology, vol. 14, no. 8, pp. 2316–2521, 1996.
[46]  E. J. Dropcho, “Intra-arterial chemotherapy for malignant Gliomas,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 537–547, WB Saunders, Philadelphia, Pa, USA, 1999.
[47]  M. S. Mahaley, S. W. Hipp, E. J. Dropcho et al., “Intracarotid cisplatin chemotherapy for recurrent Gliomas,” Journal of Neurosurgery, vol. 70, no. 3, pp. 371–378, 1989.
[48]  G. B. Bradac, R. Soffietti, A. Riva, G. Stura, S. Sales, and D. Schiffer, “Selective intra-arterial chemotherapy with BCNU in recurrent malignant Gliomas,” Neuroradiology, vol. 34, no. 1, pp. 73–76, 1992.
[49]  L. G. Feun, Y. Y. Lee, and W. K. A. Yung, “Intracarotid VP-16 in malignant brain tumors,” Journal of Neuro-Oncology, vol. 4, no. 4, pp. 397–401, 1987.
[50]  F. H. Hochberg, L. M. Parker, T. Takvorian, G. P. Canellos, and N. T. Zervas, “High-dose BCNU with autologous bone marrow rescue for recurrent glioblastoma multiforme,” Journal of Neurosurgery, vol. 54, no. 4, pp. 455–460, 1981.
[51]  G. L. Phillips, J. W. Fay, G. P. Herzig, et al., “Intensive 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), NSC 4366650 and cryopreserved autologous marrow transplantation for refractory cancer. A phase I-II study,” Cancer, vol. 52, no. 10, pp. 1792–1802, 1983.
[52]  H. Brem, S. Piantadosi, P. Burger, et al., “Intraoperative chemotherapy using biodegradable polymers in a prospective, multi-institutional placebo-controlled clinical trial for safety and effectiveness,” Neurosurgery, vol. 35, article 574, 1994.
[53]  G. Bouvier, R. D. Penn, J. S. Kroin, R. A. Beique, M. J. Guerard, and J. Lesage, “Stereotactic administration of intratumoral chronic chemotherapy of recurrent malignant Gliomas,” Applied Neurophysiology, vol. 50, no. 1–6, pp. 223–226, 1987.
[54]  D. J. Stewart, “Hyperosmolar disruption of the blood-brain barrier as a chemotherapy potentiator in the treatment of brain tumours,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 570–578, WB Saunders, Philadelphia, Pa, USA, 1999.
[55]  C. A. Meyers and P. D. Brown, “Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors,” Journal of Clinical Oncology, vol. 24, no. 8, pp. 1305–1309, 2006.
[56]  M. A. Weitzner, “Psychosocial and neuropsychiatric aspects of patients with primary brain tumors,” Cancer Investigation, vol. 17, no. 4, pp. 285–291, 1999.
[57]  D. J. Brat, R. A. Prayson, T. C. Ryken, and J. J. Olson, “Diagnosis of malignant glioma: role of neuropathology,” Journal of Neuro-Oncology, vol. 89, no. 3, pp. 287–311, 2008.
[58]  D. J. Brat, R. A. Prayson, T. C. Ryken, and J. J. Olson, “Diagnosis of malignant glioma: role of neuropathology,” Journal of Neuro-Oncology, vol. 89, pp. 287–311, 2008.
[59]  L. C. Blake and K. R. Maravilla, “Computed tomography,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 242–274, WB Saunders, Philadelphia, Pa, USA, 1999.
[60]  M. J. Fulham and G. D. Chiro, “Positron emission tomography and 1H-spectroscopic imaging,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 295–317, WB Saunders, Philadelphia, Pa, USA, 1999.
[61]  R. Spiegelmann and W. Friedman, “Closed biopsy techniques,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 376–390, WB Saunders, Philadelphia, Pa, USA, 1999.
[62]  D. C. Shrieve, P. H. Gutin, and D. A. Larson, “Central nervous system toxic effects of radiotherapy,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 737–740, WB Saunders, Philadelphia, Pa, USA, 1999.
[63]  J. C. Buckner, “Systemic sequelae of chemotherapy for Gliomas,” in The Gliomas, M. S. Berger and C. B. Wilson, Eds., pp. 759–767, WB Saunders, Philadelphia, Pa, USA, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133