全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

A Pilot Study Comparing HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas by Whole Exome Sequencing

DOI: 10.5402/2012/809370

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Next-generation sequencing of cancers has identified important therapeutic targets and biomarkers. The goal of this pilot study was to compare the genetic changes in a human papillomavirus- (HPV-)positive and an HPV-negative head and neck tumor. Methods. DNA was extracted from the blood and primary tumor of a patient with an HPV-positive tonsillar cancer and those of a patient with an HPV-negative oral tongue tumor. Exome enrichment was performed using the Agilent SureSelect All Exon Kit, followed by sequencing on the ABI SOLiD platform. Results. Exome sequencing revealed slightly more mutations in the HPV-negative tumor (73) in contrast to the HPV-positive tumor (58). Multiple mutations were noted in zinc finger genes (ZNF3, 10, 229, 470, 543, 616, 664, 638, 716, and 799) and mucin genes (MUC4, 6, 12, and 16). Mutations were noted in MUC12 in both tumors. Conclusions. HPV-positive HNSCC is distinct from HPV-negative disease in terms of evidence of viral infection, p16 status, and frequency of mutations. Next-generation sequencing has the potential to identify novel therapeutic targets and biomarkers in HNSCC. 1. Introduction Tobacco use has steadily declined over the last four decades [1]. In parallel, there has been a decline in cancers of most sites in the upper aerodigestive tract [2]. The exception to this trend is cancers of the oropharynx, particularly those of the palatine and lingual tonsils, which are caused by oncogenic subtypes of the human papillomavirus (HPV) [3]. The rise in incidence of HPV-positive head and neck squamous cell carcinoma (HNSCC) has been dramatic, causing the rates of tonsillar cancer to increase by as much as threefold in some countries [3, 4]. HPV-positive patients experience markedly better survival, and their tumors are molecularly distinct from traditional head and neck cancers [5]. Overexpression of p16 and proteolysis of p53 are nearly universal in HPV-positive tumors, in contrast to frequent loss of p16 and point mutations in p53 that are found in HPV-negative cancers [5]. However, the specific mechanisms responsible for improved survival in HPV-positive patients have not been fully elucidated. Next-generation sequencing has yielded important insights into the pathogenesis of other cancers by identifying biomarkers and therapeutic targets. High-throughput sequencing of HNSCC tumors has recently been reported, and NOTCH inactivation was the most significant finding [6, 7]. This pilot study aims to contrast the mutations seen in an HPV-positive and an HPV-negative tumor using whole exome sequencing and

References

[1]  A. Jemal, M. J. Thun, L. A. G. Ries et al., “Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control,” Journal of the National Cancer Institute, vol. 100, no. 23, pp. 1672–1694, 2008.
[2]  L. A. Ries, D. Melbert, M. Krapcho, et al., “SEER Cancer Statistics Review, 1975–2004. Periodical,” National Cancer Institute, Bethesda, Md, USA, 2007.
[3]  A. K. Chaturvedi, E. A. Engels, R. M. Pfeiffer, et al., “Human papillomavirus and rising oropharyngeal cancer incidence in the United States,” Journal of Clinical Oncology, vol. 29, no. 32, pp. 4294–4301, 2011.
[4]  A. N?sman, P. Attner, L. Hammarstedt et al., “Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma?” International Journal of Cancer, vol. 125, no. 2, pp. 362–366, 2009.
[5]  M. L. Gillison, “Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity,” Seminars in Oncology, vol. 31, no. 6, pp. 744–754, 2004.
[6]  N. Agrawal, M. J. Frederick, C. R. Pickering , et al., “Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1,” Science, vol. 333, no. 6046, pp. 1154–1157, 2011.
[7]  N. Stransky, A. M. Egloff, A. D. Tward, et al., “The mutational landscape of head and neck squamous cell carcinoma,” Science, vol. 333, no. 6046, pp. 1157–1160, 2011.
[8]  A. C. Nichols, W. C. Faquin, W. H. Westra et al., “HPV-16 infection predicts treatment outcome in oropharyngeal squamous cell carcinoma,” Otolaryngology—Head and Neck Surgery, vol. 140, no. 2, pp. 228–234, 2009.
[9]  S. Begum, M. L. Gillison, M. A. Ansari-Lari, K. Shah, and W. H. Westra, “Detection of human papillomavirus in cervical lymph nodes: a highly effective strategy for localizing site of tumor origin,” Clinical Cancer Research, vol. 9, no. 17, pp. 6469–6475, 2003.
[10]  N. Homer, B. Merriman, and S. F. Nelson, “BFAST: an alignment tool for large scale genome resequencing,” PLoS ONE, vol. 4, no. 11, Article ID e7767, 2009.
[11]  A. McKenna, M. Hanna, E. Banks et al., “The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data,” Genome Research, vol. 20, no. 9, pp. 1297–1303, 2010.
[12]  K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data,” Nucleic Acids Research, vol. 38, no. 16, p. e164, 2010.
[13]  D. J. Hedges, T. Guettouche, S. Yang et al., “Comparison of three targeted enrichment strategies on the SOLiD sequencing platform,” PLoS ONE, vol. 6, no. 4, Article ID e18595, 2011.
[14]  A. L. Reed, J. Califano, P. Cairns et al., “High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma,” Cancer Research, vol. 56, no. 16, pp. 3630–3633, 1996.
[15]  D. W. Kufe, “Mucins in cancer: function, prognosis and therapy,” Nature Reviews Cancer, vol. 9, no. 12, pp. 874–885, 2009.
[16]  S. S. Krishna, I. Majumdar, and N. V. Grishin, “Structural classification of zinc fingers: survey and summary,” Nucleic Acids Research, vol. 31, no. 2, pp. 532–550, 2003.
[17]  M. J. Lace, J. R. Anson, J. P. Klussmann et al., “Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers,” Journal of Virology, vol. 85, no. 4, pp. 1645–1654, 2011.
[18]  H. Feng, M. Shuda, Y. Chang, and P. S. Moore, “Clonal integration of a polyomavirus in human Merkel cell carcinoma,” Science, vol. 319, no. 5866, pp. 1096–1100, 2008.
[19]  A. C. Nichols, J. Yoo, D. A. Palma, et al., “Frequent mutations in TP53 and CDKN2A found by next-generation sequencing of head and neck cancer cell lines,” Archives of Otolaryngology—Head & Neck Surgery, vol. 138, no. 8, pp. 732–739, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133