全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

The Pak4 Protein Kinase in Breast Cancer

DOI: 10.5402/2012/694201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Paks4, along with Paks5, and 6 are members of the group B family of p21-activated kinases (Paks). The Paks play multiple different roles in controlling cell morphology, cell growth, proliferation, and signaling. Pak4 has essential roles in embryonic development (Qu et al., 2003), but in adults high levels of Pak4 are frequently associated with cancer. Pak4 has been implicated in several types of cancer (Wells and Jones, 2010; Eswaran et al., 2009; Liu et al., 2008; and Liu et al., 2010) and it is strongly linked to breast cancer (Liu et al., 2008; Liu et al. 2010; Yu et al., 2009; Rafn et al., 2012; and So et al., 2012). Breast tumors and breast cancer cell lines frequently have high levels of Pak4 (Liu et al., 2008), and overexpression of Pak4 in mammary epithelial cells leads to tumorigenesis in mice (Liu et al., 2010). This paper summarizes the current work on the role of Pak4 in breast cancer. 1. Introduction The p21-activated kinase (PAK) family of serine/threonine kinases have important roles in cytoskeletal organization, cell signaling, and cell proliferation and survival [1, 2]. They were first identified as effector proteins for Cdc42 and Rac, members of the Rho GTPase family, but they can respond to many different types of signals. The Paks fall into two categories, group A and group B, based on their sequences and functions (see Figure 1). Figure 1: Schematic diagram of the structures of the group A and group B Pak family members. The group A and group B Paks share in common an amino terminal GTPase binding domain (GBD) and a carboxyl terminal serine/threonine kinase domain, as illustrated in Figure 1. The GBD and kinase domains of the two groups, however, have only approximately 50% identity with each other, and the regulatory domains outside of the GBD and kinase domains are completely different in the group B Paks compared with the group A Paks. The different Paks also differ in their substrate specificity, although there is also some overlap [3, 4]. The different Pak family members differ in their expression patterns. Pak4 expression is high throughout the embryo during the development, but in many adult tissues Pak4 protein levels are low. Pak4 has an important role in embryonic development [5], but in adult tissues Pak4 overexpression is often associated with cancer. This paper will focus on Pak4, and recent studies aimed at investigating its role in breast cancer. 2. Pak4 and Breast Cancer Numerous studies point to a role for the Pak kinases in oncogenic transformation [6–15]. Among the group B Paks, Pak4 is most closely linked to

References

[1]  C. M. Wells and G. E. Jones, “The emerging importance of group II PAKs,” Biochemical Journal, vol. 425, no. 3, pp. 465–473, 2010.
[2]  J. Eswaran, M. Soundararajan, R. Kumar, and S. Knapp, “UnPAKing the class differences among p21-activated kinases,” Trends in Biochemical Sciences, vol. 33, no. 8, pp. 394–403, 2008.
[3]  C. Dan, A. Kelly, O. Bernard, and A. Minden, “Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin,” The Journal of Biological Chemistry, vol. 276, no. 34, pp. 32115–32121, 2001.
[4]  J. Qu, M. S. Cammarano, Q. Shi, K. C. Ha, P. De Lanerolle, and A. Minden, “Activated PAK4 regulates cell adhesion and anchorage-independent growth,” Molecular and Cellular Biology, vol. 21, no. 10, pp. 3523–3533, 2001.
[5]  J. Qu, X. Li, B. G. Novitch et al., “PAK4 kinase is essential for embryonic viability and for proper neuronal development,” Molecular and Cellular Biology, vol. 23, no. 20, pp. 7122–7133, 2003.
[6]  J. Eswaran, M. Soundararajan, and S. Knapp, “Targeting group II PAKs in cancer and metastasis,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 209–217, 2009.
[7]  Y. Liu, H. Xiao, Y. Tian et al., “The Pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice,” Molecular Cancer Research, vol. 6, no. 7, pp. 1215–1224, 2008.
[8]  Y. Liu, N. Chen, X. Cui et al., “The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis,” Oncogene, vol. 29, no. 44, pp. 5883–5894, 2010.
[9]  N. Gnesutta and A. Minden, “Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7838–7848, 2003.
[10]  N. Gnesutta, J. Qu, and A. Minden, “The Serine/Threonine Kinase PAK4 prevents caspase activation and protects cells from apoptosis,” The Journal of Biological Chemistry, vol. 276, no. 17, pp. 14414–14419, 2001.
[11]  X. Li and A. Minden, “PAK4 functions in tumor necrosis factor (TNF) α-induced survival pathways by facilitating TRADD binding to the TNF receptor,” The Journal of Biological Chemistry, vol. 280, no. 50, pp. 41192–41200, 2005.
[12]  G. N. Paliouras, M. A. Naujokas, and M. Park, “Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the met receptor,” Molecular and Cellular Biology, vol. 29, no. 11, pp. 3018–3032, 2009.
[13]  T. Ahmed, K. Shea, J. R. W. Masters, G. E. Jones, and C. M. Wells, “A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF,” Cellular Signalling, vol. 20, no. 7, pp. 1320–1328, 2008.
[14]  A. Gringel, D. Walz, G. Rosenberger et al., “PAK4 and αPIX determine podosome size and number in macrophages through localized actin regulation,” Journal of Cellular Physiology, vol. 209, no. 2, pp. 568–579, 2006.
[15]  W. Bao, M. Thullberg, H. Zhang, A. Onischenko, and S. Str?mblad, “Cell attachment to the extracellular matrix induces proteasomal degradation of via Cdc42/Rac1 signaling,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4587–4597, 2002.
[16]  A. Whale, F. N. Hashim, S. Fram, G. E. Jones, and C. M. Wells, “Signalling to cancer cell invasion through PAK family kinases,” Frontiers in Bioscience, vol. 16, no. 3, pp. 849–864, 2011.
[17]  P. R. Molli, D. Q. Li, B. W. Murray, S. K. Rayala, and R. Kumar, “PAK signaling in oncogenesis,” Oncogene, vol. 28, no. 28, pp. 2545–2555, 2009.
[18]  B. Dummler, K. Ohshiro, R. Kumar, and J. Field, “Pak protein kinases and their role in cancer,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 51–63, 2009.
[19]  M. G. Callow, S. Zozulya, M. L. Gishizky, B. Jallal, and T. Smeal, “PAK4 mediates morphological changes through the regulation of GEF-H1,” Journal of Cell Science, vol. 118, part 9, pp. 1861–1872, 2005.
[20]  M. G. Callow, F. Clairvoyant, S. Zhu et al., “Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 550–558, 2002.
[21]  A. C. Kimmelman, A. F. Hezel, A. J. Aguirre et al., “Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19372–19377, 2008.
[22]  H. J. Zhang, M. K. Y. Siu, M. C. W. Yeung et al., “Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma,” Carcinogenesis, vol. 32, no. 5, pp. 765–771, 2011.
[23]  C. M. Wells, A. Abo, and A. J. Ridley, “PAK4 is activated via P13K in HGF-stimulated epithelial cells,” Journal of Cell Science, vol. 115, no. 20, pp. 3947–3956, 2002.
[24]  C. M. Wells, A. D. Whale, M. Parsons, J. R. W. Masters, and G. E. Jones, “PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion,” Journal of Cell Science, vol. 123, no. 10, pp. 1663–1673, 2010.
[25]  J. Y. So, H. J. Lee, P. Kramata, A. Minden, and N. Suh, “Differential expression of key signaling proteins in MCF10 cell lines, a human breast cancer progression model,” Molecular and Cellular Pharmacology, vol. 4, no. 1, pp. 31–40, 2012.
[26]  W. Yu, Y. Kanaan, Y. K. Baed, and E. Gabrielson, “Chromosomal changes in aggressive breast cancers with basal-like features,” Cancer Genetics and Cytogenetics, vol. 193, no. 1, pp. 29–37, 2009.
[27]  V. Karantza-Wadsworth and E. White, “A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression,” Methods in Enzymology, vol. 446, pp. 61–76, 2008.
[28]  J. Debnath, K. R. Mills, N. L. Collins, M. J. Reginato, S. K. Muthuswamy, and J. S. Brugge, “The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini,” Cell, vol. 111, no. 1, pp. 29–40, 2002.
[29]  C. Gutierrez and R. Schiff, “HER2: biology, detection, and clinical implications,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 1, pp. 55–62, 2011.
[30]  V. Karantza-Wadsworth, S. Patel, O. Kravchuk et al., “Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis,” Genes and Development, vol. 21, no. 13, pp. 1621–1635, 2007.
[31]  B. Rafn, C. F. Nielsen, S. H. Andersen et al., “ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression,” Molecular Cell, vol. 45, no. 6, pp. 764–776, 2012.
[32]  S. W. Wallace, J. Durgan, D. Jin, and A. Hall, “Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B,” Molecular Biology of the Cell, vol. 21, no. 17, pp. 2996–3006, 2010.
[33]  G. Moreno-Bueno, F. Portillo, and A. Cano, “Transcriptional regulation of cell polarity in EMT and cancer,” Oncogene, vol. 27, no. 55, pp. 6958–6969, 2008.
[34]  A. Suzuki and S. Ohno, “The PAR-aPKC system: lessons in polarity,” Journal of Cell Science, vol. 119, no. 6, pp. 979–987, 2006.
[35]  R. A. Wang, H. Zhang, S. Balasenthil, D. Medina, and R. Kumar, “PAK1 hyperactivation is sufficient for mammary gland tumor formation,” Oncogene, vol. 25, no. 20, pp. 2931–2936, 2006.
[36]  L. E. Arias-Romero, O. Villamar-Cruz, A. Pacheco et al., “A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells,” Oncogene, vol. 29, no. 43, pp. 5839–5849, 2010.
[37]  H. D. Soule, T. M. Maloney, S. R. Wolman et al., “Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10,” Cancer Research, vol. 50, no. 18, pp. 6075–6086, 1990.
[38]  F. R. Miller, S. J. Santner, L. Tait, and P. J. Dawson, “MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ,” Journal of the National Cancer Institute, vol. 92, no. 14, pp. 1185–1186, 2000.
[39]  F. Basolo, J. Elliott, L. Tait et al., “Transformation of human beast epithelial cells by c-Ha-ras oncogene,” Molecular Carcinogenesis, vol. 4, no. 1, pp. 25–35, 1991.
[40]  P. J. Dawson, S. R. Wolman, L. Tait, G. H. Heppner, and F. R. Miller, “MCF10AT: a model for the evolution of cancer from proliferate breast disease,” American Journal of Pathology, vol. 148, no. 1, pp. 313–319, 1996.
[41]  Q. Li, S. R. Mullins, B. F. Sloane, and R. R. Mattingly, “p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer,” Neoplasia, vol. 10, no. 4, pp. 314–328, 2008.
[42]  B. W. Murray, C. Guo, J. Piraino et al., “Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9446–9451, 2010.
[43]  Z. S. Zhao and E. Manser, “Do PAKs make good drug targets?” F1000 Biology Reports, vol. 2, no. 1, article 70, 2010.
[44]  J. Zhang, J. Wang, Q. Guo et al., “LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells,” Cancer Letters, vol. 317, no. 1, pp. 24–32, 2012.
[45]  R. H. Daniels, P. S. Hall, and G. M. Bokoch, “Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells,” The EMBO Journal, vol. 17, no. 3, pp. 754–764, 1998.
[46]  M. A. Sells, U. G. Knaus, S. Bagrodia, D. M. Ambrose, G. M. Bokoch, and J. Chernoff, “Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells,” Current Biology, vol. 7, no. 3, pp. 202–210, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133