External Beam Therapy in a Four-Field Box Technique with Paclitaxel versus a Two-Field Technique with Cisplatin in Locally Advanced Carcinoma Cervix: A Phase II Monocentric Trial
Introduction. External beam pelvic radiotherapy with cisplatin and brachytherapy is the standard of care for patients with advanced cervical malignancy. This study was aimed at evaluating the toxicity of a two-field radiotherapy with cisplatin and brachytherapy compared to a four-field box technique with paclitaxel and brachytherapy for stages IIB/IIIB cervical cancer. The differences in response to the overall treatment were also examined. Methods. 35 patients were enrolled in this phase II prospective randomized trial conducted from February 2006 to February 2007. In arm I, up to 40?Gy in 20 fractions followed by 10?Gy in 5 fractions in split field with cisplatin 40?mg/M2 and, in arm II, 50?Gy in 25 fractions with paclitaxel 50?mg/M2 were given. Results. Toxicity in genitourinary, lower gastrointestinal, and hematological tissues was significantly higher in arm I. The duration of concurrent chemoradiotherapy in either arm was similar. The overall treatment time was less in arm II. No statistically significant difference in the objective response was observed between arms. Conclusion. Two-field radiotherapy with cisplatin is a tolerable regime but more toxic than four-field box radiotherapy with paclitaxel. The major setbacks are that a radiotherapy technique as well as chemotherapy is different; hence, toxicity and outcome of treatment should be viewed as a collective response of the whole treatment regimen and the small sample size. 1. Introduction The commonest gynecological cancer before the age of 50 is carcinoma cervix. The incidence is high in developing and underdeveloped countries. Women belonging to low socioeconomic status show higher incidence [1]. Though there is no population-based cancer registry in Nepal, incidence of the age-standardized incidence rate and mortality rate is estimated to be 26.4 per 100000 women and 14.1 per 100000 women, respectively. Similarly, the incidence of cervical cancer per 100000 women in India, Bangladesh, and Sri Lanka is estimated to be 30.7, 27.6, and 17.7, respectively [2]. Poor personal hygiene, poor nutritional status, multiple sexual partners, first coitus in young age, early child birth, promiscuity of the spouse, human papilloma virus infection, sexually transmitted diseases, and immunocompromised states are cited as main risk factors [3, 4]. Though there is tremendous breakthrough in cancer research and changes in clinical practice, the nature of disease still remains the same. Early carcinoma of the uterine cervix can be effectively managed either by surgery or by radiotherapy; the results are
References
[1]
N. Segnan, “Socioeconomic status and cancer screening,” IARC Scientific Publications, no. 138, pp. 369–376, 1997.
[2]
R. Sankaranarayanan, N. Bhatla, P. E. Gravitt et al., “Human papillomavirus infection and cervical cancer prevention in India, Bangladesh, Sri Lanka and Nepal. In: ICO Monograph Series on HPV and Cervical Cancer: Asia Pacific Regional Report 2008,” Vaccine, vol. 26, supplement 12, pp. M43–M52, 2008.
[3]
F. Parazzini, L. Chatenoud, C. La Vecchia, E. Negri, S. Franceschi, and G. Bollis, “Determinants of risk of invasive cervical cancer in young women,” British Journal of Cancer, vol. 77, no. 5, pp. 838–841, 1998.
[4]
V. Gawande, S. N. Wahab, S. P. Zodpey, and N. D. Vasudeo, “Parity as a risk factor for cancer cervix,” Indian Journal of Medical Sciences, vol. 52, no. 4, pp. 147–150, 1998.
[5]
F. Landoni, A. Maneo, A. Colombo et al., “Randomised study of radical surgery versus radiotherapy for stage IB-IIA cervical cancer,” The Lancet, vol. 350, no. 9077, pp. 535–540, 1997.
[6]
W. C. Hsu, N. N. Chung, Y. C. Chen et al., “Comparison of surgery or radiotherapy on complications and quality of life in patients with the stage IB and IIA uterine cervical cancer,” Gynecologic Oncology, vol. 115, no. 1, pp. 41–45, 2009.
[7]
M. Morris, P. J. Eifel, J. Lu et al., “Pelvic radiation with concurrent chemotherapy compared with pelvic and Para-aortic radiation for high-risk cervical cancer,” The New England Journal of Medicine, vol. 340, no. 15, pp. 1137–1143, 1999.
[8]
P. G. Rose, B. N. Bundy, E. B. Watkins et al., “Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer,” The New England Journal of Medicine, vol. 340, no. 15, pp. 1144–1153, 1999.
[9]
C. W. Whitney, W. Sause, B. N. Bundy et al., “Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a gynecologic oncology group and Southwest oncology group study,” Journal of Clinical Oncology, vol. 17, no. 5, pp. 1339–1348, 1999.
[10]
J. A. Green, J. M. Kirwan, J. F. Tierney et al., “Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis,” The Lancet, vol. 358, no. 9284, pp. 781–786, 2001.
[11]
H. Lukka, H. Hirte, A. Fyles et al., “Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer—a meta-analysis,” Clinical Oncology, vol. 14, no. 3, pp. 203–212, 2002.
[12]
National Comprehensive Cancer Network: cervical cancer Version 2.2013, http://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf.
[13]
N. Wang, Q. L. Guan, K. Wang et al., “Radiochemotherapy versus radiotherapy in locally advanced cervical cancer: a meta-analysis,” Archives of Gynecology and Obstetrics, vol. 283, no. 1, pp. 103–108, 2011.
[14]
S. Kato, T. Ohno, K. Thephamongkhol et al., “Multi-institutional phase II clinical study of concurrent chemoradiotherapy for locally advanced cervical cancer in East and Southeast Asia,” International Journal of Radiation Oncology, Biology and Physics, vol. 77, no. 3, pp. 751–757, 2010.
[15]
P. J. Eifel, W. W. Thoms Jr., T. L. Smith, M. Morris, and M. J. Oswald, “The relationship between brachytherapy dose and outcome in patients with bulky endocervical tumors treated with radiation alone,” International Journal of Radiation Oncology, Biology and Physics, vol. 28, no. 1, pp. 113–118, 1994.
[16]
J. D. Cox, J. Stetz, and T. F. Pajak, “Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC),” International Journal of Radiation Oncology, Biology and Physics, vol. 31, no. 5, pp. 1341–1346, 1995.
[17]
L. C. Wong, Y. C. Choo, D. Choy, J. S. T. Sham, and H. K. Ma, “Longterm follow up of potentiation of radiotherapy by Cis-platinum in advanced cervical cancer,” Gynecologic Oncology, vol. 35, no. 2, pp. 159–163, 1989.
[18]
C. T. Coughlin and R. C. Richmond, “Biologic and clinical developments of cisplatin combined with radiation: concepts, utility, projections for new trials, and the emergence of carboplatin,” Seminars in Oncology, vol. 16, no. 4, supplement 6, pp. 31–43, 1989.
[19]
A. P. Kudelka, R. Winn, C. L. Edwards et al., “Activity of paclitaxel in advanced or recurrent squamous cell cancer of the cervix,” Clinical Cancer Research, vol. 2, no. 8, pp. 1285–1288, 1996.
[20]
A. Cerrotta, G. Gardan, R. Cavina et al., “Concurrent radiotherapy and weekly Paclitaxel for locally advanced or recurrent squamous cell carcinoma of the uterine cervix. A pilot study with intensification of dose,” European Journal of Gynaecological Oncology, vol. 23, no. 2, pp. 115–119, 2002.
[21]
J. Liebmann, J. A. Cook, J. Fisher, D. Teague, and J. B. Mitchell, “In vitro studies of taxol as a radiation sensitizer in human tumor cells,” Journal of the National Cancer Institute, vol. 86, no. 6, pp. 441–446, 1994.
[22]
WHO, Handbook for Reporting Results of Cancer Treatment, World Health Organisation Offset Publication, Geneva, Switzerland, 1979.
[23]
A. B. Miller, B. Hoogstraten, M. Staquet, and A. Winkler, “Reporting results of cancer treatment,” Cancer, vol. 47, no. 1, pp. 207–214, 1981.
[24]
C. A. Perez, P. W. Grigsby, H. Castro-Vita, and M. A. Lockett, “Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy,” International Journal of Radiation Oncology, Biology and Physics, vol. 32, no. 5, pp. 1275–1288, 1995.
[25]
R. M. Lanciano, T. F. Pajak, K. Martz, and G. E. Hanks, “The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study,” International Journal of Radiation Oncology, Biology and Physics, vol. 25, no. 3, pp. 391–397, 1993.